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ABSTRACT
Origami engineering is a promising approach to transform-

ing structures and machines due to its potential for geometric,
kinematic, and mechanical complexity. However, actuating this
transformation can be expensive, slow, and unreliable. In this
paper, we demonstrate repeatable and reversible transformation
of a two-vertex origami string between different configurations
using a stacked-Miura cell as an actuation system. We character-
ize the snap-through behavior of the cell and show how the cell
can be coupled to the string to generate drive repeatable trans-
formations between different configurations. We then show how
gravity can affect this process. The results indicate that bistable
origami cells are a promising method for lightweight, repeatable
transformation.

NOMENCLATURE
P Parallel configuration
AP Antiparallel configuration

INTRODUCTION
Origami folds are capable of creating complex three-

dimensional structures from sheet materials. This technique has
been used to build origami-inspired machines with capabilities

∗Address all correspondence to this author.

including transformable geometries [1, 2], programmable me-
chanical properties [3,4], and facile manufacturing [5–7]. Partic-
ularly relevant to this paper, origami engineering has been pro-
posed as a functional approach to transformation. This concept
has been applied to structures and machines, with applications
including robotics [8–10], space exploration [11, 12], and wire-
less communication [13, 14].

However, we currently lack a method for actuating trans-

100mm

FIGURE 1: A TWO-VERTEX ORIGAMI STRING DRIVEN
BY A STACKED-MIURA CELL.
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formation that is efficient, cost effective, and reliable. Previous
efforts have focused on self-folding, in which low-profile func-
tional materials are embedded within the structure. Examples of
these materials include shape memory polymers [15, 16], shape
memory alloys [1, 17], and swelling hydrogels [18–21]. These
increase complexity and cost of the structure and are often diffi-
cult to control. Moreover, self-folding at a large (centimeter to
meter) scale [8, 22] happens at a slower pace, lasting from min-
utes to hours. Other techniques such as the use of pneumatic
pouch motors [10, 22, 23] lack folding accuracy, and using DC
motors [24, 25] to power them requires bulky mechanisms and
an external power supply.

These challenges are particularly relevant when the trans-
formation occurs near the flat-unfolded state. In this state, an
origami pattern is in a kinematic singularity, and can often fold
into multiple configurations, each with their own kinematic be-
havior and mechanical behavior [26, 27]. If a self-folding struc-
ture enters the wrong configuration, it can become locked in an
ineffective state [28].

An alternative method for transforming origami structures
is to take advantage of the origami string’s dynamic behavior.
Zuliani et al. [24] showed that an origami structure would trans-
form between multiple configurations when actuated at differ-
ent frequencies, and Liu et al. [25] devised a model to predict
these transformations in response to a step input. In summary,
an origami structure with a single kinematic degree of freedom
but multiple configurations could reliably transform using only a
single actuator. However, due to the dynamic nature of the trans-
formation, this required a relatively high-power input driven by
an electric motor that was substantially heavier than the origami
structure.

To replace the electric motor with a lightweight mechanism
that can still deliver a large impulse to the origami structure, we
looked to bistable mechanisms to provide this dynamic excitation
and drive transformation. One promising origami-inspired de-
sign is the The stacked-Miura cell, which was studied to mimic
the behavior of plants that move without muscles [29–31]. It
is made up of two connected Miura folds that exhibit bi-stable
behavior when designed with the required constraints [29, 32].
The system is designed to store elastic potential energy at the
unstable point where the cell can “snap” into either configura-
tion with a fixed speed without the need for separate actuation
mechanisms [29]. There are simpler bistable mechanisms, Exist-
ing including buckled beams [33], but stacked-Miura cells have
the following advantages to our application: (1) They are also
origami-based, making their design and fabrication inherently
compatible with origami transformation; (2) They have multi-
ple angles which can act as different ‘outputs’ for different com-
ponents; and (3) They can be connected into arrays of coupled
units, allowing for distributed actuation of larger systems.

In this paper, we present the design and characterization of
an origami string with transformation driven by an integrated

stacked-Miura cell to generate dynamic excitations to transform
an origami string. The cell’s bistable behavior results in a repeat-
able dynamic input to the base of the origami string. We show
that the resulting transformation is reliable, reversible, and can be
modified by changing the stiffness of the cell or orientation of the
string (and gravity’s effect on its dynamics). With this capabil-
ity we can create origami systems that can rapidly transform into
specific configurations without power-intensive actuation (Fig.
1).

DESIGN AND MODELING
Our system consists of two components: an origami string

that can transform into distinct configurations, and a stacked-
Miura cell that can provide specific dynamic excitations to the
origami string. The origami string can transform among config-
urations when the base input passes through the flat state and the
stacked-Miura cell provides an angular displacement as input. In
order to couple the origami string and the stacked-Miura cell, an
angle offset is introduced.

Origami String
Design Previous studies have defined the Miura vertex as

an origami pattern made out of four plates and connected with
four creases. [11]. Among the four creases, the two spinal creases
(in red) are collinear when flat and the two peripheral creases (in
blue) are symmetric across the spine with an angle α between the
spinal and peripheral creases as shown in Fig. 2(A). When this
Miura vertex folds, we define the lower spinal angle as θ1, upper
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FIGURE 2: MIURA VERTEX DESIGN. (A) MIURA CREASE
PATTERN, RED: SPINAL CREASES, BLUE: PERIPHERAL
CREASES. (B) ANTIPARALLEL (AP) CONFIGURATION.

(C) PARALLEL (P) CONFIGURATION.
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FIGURE 3: ORIGAMI STRING DESIGN. (A) A TWO
VERTICES MIURA-ORIGAMI PATTERN. (B-E) FOUR

DISTINCT CONFIGURATIONS THE ORIGAMI STRING
CAN ACHIEVE. (B) ANTIPARALLEL-ANTIPARALLEL
CONFIGURATION. (C) ANTIPARALLEL-PARALLEL

CONFIGURATION, (D) PARALLEL-PARALLEL
CONFIGURATION. (E) PARALLEL-ANTIPARALLEL

CONFIGURATION.

spinal angle as θ2 and segment angle as φ . Based on the relation
between θ1 and θ2, we define two configurations, antiparallel
(AP) configuration when θ1 = −θ2 with φ > 0 (Fig. 2(B)), and
parallel (P) configuration when θ1 = θ2 with φ = 0 (Fig. 2(C)).

One class of origami structures that use the Miura vertex
pattern is the origami string [34]. The string consists of multi-
ple Miura vertices connected in series, all sharing a single de-
gree of freedom. The trajectory of the string can be programmed
by changing its fold angle or the angles between the hinges at
each vertex, and can approximate any path in 3D space. In this
paper we use a two-vertex string (Fig. 3(A)). This string can
fold into four distinct configurations with different mount-valley
assignments to its hinges (eight, if considering their symmetric
configurations), as shown in Fig. 3(C-D). Using a naming con-
vention in which the lower vertex configuration is followed by
the upper vertex configuration, we name the four configurations
as ‘antiparallel-antiparallel’ (AP-AP) (Fig. 3(B)), ‘antiparallel-
parallel’ (AP-P) (Fig. 3(C)), ‘parallel-parallel’ (P-P) (Fig. 3(D))
and ‘parallel-antiparallel’ (P-AP) (Fig. 3(E)) respectively. In
our physical system, we use L1 = L3 = 75mm, L2 = 225mm,
w1 = w2 = 75mm, α1 = α2 = 45◦, and α3 = α4 = 135◦.

Concept of Dynamic Transformation During trans-
formation of an origami string, the final configuration depends

on its initial configuration, angular input signal (velocity and
displacement), body forces (e.g. gravity) and the inertia and
stiffness of its components. Previous studies have validated a
physics-based model that lumps several dynamic parameters into
a set of inertia and stiffness values for each vertex [25]. The
general concept of this model is that the origami string is not
kinematically constrained, but instead can be considered a series
of state variables (angles) with inertia and connected by springs.
Due to the backlash in the system, there is a phase lag between
output angle θ2 and input angle θ1 of each vertex (referring to
Fig. 2). When the vertex passes through the flat state and θ1
changes sign, this phase lag creates a ‘window’ in which when
θ2 hasn’t yet changed sign and transformation could occur. In or-
der for the mechanism to stay in the same configuration, θ2 must
also cross the flat state and change sign to match θ1. In order
for θ2 to pass through flat state, The kinetic energy of the vertex,
determined from its inertia and speed, must be greater than its
potential energy defined by its stiffness and starting position.

Stacked-Miura Cell
The fundamental components of the stacked-Miura cell are

two Miura vertices (Fig. 4(A)). There are some constraints, b1 =

b2 and cosβ1
cosβ2

= a2
a1

, that must be satisfied in order to make the two
folds kinematically compatible (as in Fig. 4(B)) as shown in Li
et al. [29].

Here we define the fold direction as ‘out’ when the inner vol-
ume increases (transform from Fig. 4(D) to Fig. 4(C)), and ‘in’
when the inner volume decreases (transform from Fig. 4(D) to
Fig. 4(E)). We define the folding angle of the peripheral crease of
the upper Miura vertex as η (Fig. 4(C-E)). When stacked-Miura
cell folds out, η changes from an obtuse angle to a acute an-
gle. In our physical system, we use a1 = 100mm, a2 = 175mm,
b1 = b2 = 100mm, β1 = 60◦ and β2 = 73.4◦.

Previous studies have provided us the kinematic relationship
of the angles in the stacked-Miura cell [29] that enable snap-
through behavior and bi-stability. Here we use angle η (Fig. 4) as
the dynamic input for origami string since it passes through flat
state (η = 180◦) and settles down in one of the stable states due to
the potential energy stored in the stacked-Miura cell mechanism.

Coupling Origami String to Stacked-Miura Cell
To make the dynamic behavior as repeatable as possible, the

cell is driven at a negligible velocity up to the snap-through point
η = 180◦ (Fig. 5(B)) and allowed to snap freely through based
on its inherent stiffness and inertia. Because of this, we assume
that the velocity of angle η is zero (η̇(η=180◦) ≈ 0) when the cell
reaches the snap-through point. If we mount the origami string
directly to the stacked-Miura cell at angle η , the origami string
won’t obtain a velocity when the input passes through flat state.
To solve this problem, we manually added an angle offset ε to
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FIGURE 4: STACKED-MIURA CELL DESIGN. (A) MIURA-ORIGAMI PATTERNS OF THE TWO PLATES. (B) THE TWO
PLATES ARE STACKED TOGETHER. (C-E) STACKED-MIURA CELL FOLDS ‘OUT’ WHEN INNER VOLUME INCREASES

AND FOLDS ‘IN’ WHEN INNER VOLUME DECREASES.

input angle θ1, where 2ε +η − 180 = 2θ1 (Fig. 5(A)). We 3D
printed the blocks (using Form 2, Formlabs, White Resin 1L, RS-
F2-GPWH-04) and mounted it onto the stacked-Miura cell (Fig.
5(D)). This design feature puts the origami string at a position
such that it passes through the flat state (Fig. 5(C)) when the
stacked-Miura cell achieves maximum angular velocity.
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FIGURE 5: WORKING PRINCIPLE OF THE PHASE LAG.
(A) INITIAL STATUS, WHERE ANGLE η HAS NOT PAST
THROUGH FLAT UNFOLD STATE. (B) WHEN η PASSES
THROUGH FLAT UNFOLD STATE, ORIGAMI STRING IS
STILL IN ITS INITIAL CONFIGURATION WITH INPUT

ANGLE θ1. (C) THE BASE OF ORIGAMI STRING PASSES
THE FLAT UNFOLD STATE WHEN η HAS REACHED

FULL SPEED. (D) A PHOTO OF THE TEST SET-UP, WITH
TWO BLOCKS MOUNTED ON THE STACKED-MIURA
CELL TO PROVIDE THE ANGLE OFFSET ε , WHERE

2ε +η −180 = 2θ1.

FABRICATION
To fabricate the origami string and stacked-Miura cell, we

used 3 mm-thick acrylic sheets as the structural plate material
and barrel hinges between adjacent plates. Individual plates were
cut using a CO2 laser cutter (Universal Laser Systems, PLS6M2).
Surface-mount barrel hinges (McMaster-Carr #1603A23) with

(A)

(B)

Extra weights

Barrel hinges

Springs

Mounting holes

FIGURE 6: (A) ORIGAMI STRING. (B) STACKED-MIURA
CELL. THE WIDTH OF THE SQUARE GRID IS 12.7 MM.
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5/64 ” diameter pins were first dissembled by knocking the pins
out. The pairs of separated leaves were then screwed to the
adjacent plates, reconnected by using 1/16 ” diameter rotary
shaft and locked using set-screw shaft collars (McMaster-Carr
#6432K71). We used shafts with a slightly smaller diameter in
order to increase flexibility of the original surface-mount barrel
hinges, reduce friction and provide the backlash necessary for
Miura vertex transformation.

For the origami string component (Fig. 6(A)), holes were
cut on the facets. Holes on the two plates on the right were used
to mount the origami string to the stacked-Miura cell, while holes
on the four facets on the left were used to mount weights (1/4”-
20 screws and nuts) that increase inertia of the origami string.
The number of barrel hinges on each crease was varied to ad-
just stiffness. For the stacked-Miura cell component (Fig. 6(B)),
an elastic element was mounted to the stacked-Miura cell using
cable ties (McMaster-Carr #7130K53) in order to generate bi-
stability.

EXPERIMENTS AND RESULTS
We first characterized the dynamic behavior of the origami

cell when built with different inherent stiffnesses. We then
mounted an origami string to the stacked-Miura cell, quasi-
statically pushed the cell to the bistable point and allowed it to
snap through freely while observing the resulting transformation.

Dynamic Behavior of Stacked-Miura Cell
Previous studies have shown that the stacked-Miura cell has

a critical, unstable equilibrium configuration at η = 180◦ [29].
This is the point at which the mechanism has a local maximum
potential energy and will snap to one of the two configurations.
Here we studied the dynamic behavior of the stacked-Miura cell
by characterizing the angle η when the mechanism snaps through
the unstable equilibrium configuration.

The stacked-Miura cell mechanism was mounted on a frame
made with 80-20 and a high speed camera (SONY Cyber-shot
RX100V, 960fps) was placed over the hinge corresponding to η .
The mechanism was actuated using a tendon driven system as
shown in Fig. 1. The tendon was pulled slowly so as not to affect
the dynamic response. Angle η in each frame was tracked using
a MATLAB program.

TABLE 1: FULL SPEED ANGLES AND ANGULAR SPEED.

# of
springs

Full speed
angle η f s (◦)

Angular speed
η̇ (rads−1) Related plot

1 131.31±1.10 25.68±0.12 Fig. 7 Solid

2 135.77±1.79 38.97±0.16 Fig. 7 Dashed
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FIGURE 7: STACKED-MIURA CELL OUTPUT ANGLE η

AS A FUNCTION OF TIME WHEN VARYING THE
NUMBER OF SPRINGS. SOLID LINE: ONE SPRING

HOOKED ON THE STACKED-MIURA CELL. DASHED
LINE: TWO SPRINGS HOOKED ON THE

STACKED-MIURA CELL. SHADED AREAS INDICATE
STANDARD DEVIATION. N = 3

We varied the number of elastic elements to create differ-
ent dynamic responses, installing one or two springs across the
cell. Results of tracked angle η are shown in Fig. 7. The left
edge of the plot (t = 0s) represents the snap-through point, where
η = 180◦. As shown in the results, with more elastic elements,
the stacked-Miura cell accelerates faster and reaches a higher ve-
locity due to higher potential energy stored in the system at the
unstable equilibrium configuration (the snap-through point). For
each response, an angle η f s was identified as the point at which
the angular velocity η̇ became effectively constant. These values
are summarized in Tab. 1.

In both cases, we observed that η f s ≈ 130◦. Therefore, when
attaching the origami string in future experiments we chose to
use an angle offset of ε = 27.5◦ so that the system would reach a
constant velocity by the time the origami string reached the flat
state.

Origami String Transformation
To demonstrate the transformation of a two-vertex origami

string using the stacked-Miura cell, we mounted the string onto
the cell (Fig. 8). The origami string was initially placed in AP-
AP configuration, defined in Fig. 3. When actuating the stacked-
Miura cell with the single spring, the string transformed from the
AP-AP to the AP-P configuration (Fig. 8(A)). When the cell had
two springs installed, the string transformed from AP-AP to P-P
(Fig. 8(B)). Each of these experiments were run 10 times and the
same transformation occurred in each case, indicating that the

5 Copyright © 2019 ASME
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FIGURE 8: ORIGAMI STRING TRANSFORMATION. (A)
TRANSFORMATION DRIVEN BY THE STACKED-MIURA

CELL WITH ONE SPRING. (B) TRANSFORMATION
DRIVEN BY THE STACKED-MIURA CELL WITH TWO

SPRINGS. N = 10.

transformation is repeatable.

To better understand this transformation, we placed a high
speed camera (SONY Cyber-shot RX100V, 960fps) in front of
the structure to capture the angular displacement of the hinges
over time. The phase lag (θ2 −θ1)θ1=0◦ of the lower vertex was
measured and results are shown in Fig. 9. We can see that
phase lag is greater when actuated with two springs than with
one spring. In addition, we calculated the zero-torque displace-
ment (backlash) θb of the string by holding the lower plates flat
and vertical, and observed that that θ2 settled down at θb = 5.25◦.
This angle is marked in in Fig. 9 as a dashed line. Because θ2
can move freely within the backlash range θ1 ± θb, we expect
that as long as the phase lag is less than θb transformation will
not occur during pass-through, such as in the lower vertex in Fig.
8(A). However, if the phase lag is greater than θb, then θ2 gets
‘locked’ before it can pass through the flat state and the vertex
transforms, such as the lower vertex in Fig. 8(B). Note that this
behavior occurs in each vertex, so separate measurements would
need to be collected on the upper vertices to further validate the
model.
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FIGURE 9: PHASE LAG OF THE LOWER VERTEX.
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ANGLE θB. ERROR BARS INDICATE STANDARD

DEVIATION. N = 10.

Reversibility Implementation
Due to the angle offset between the origami string base and

the stacked-Miura cell, the snap-through only excites the origami
string when the stacked-Miura cell folds out. In the opposite di-
rection, the slow actuation means that the dynamics are negligi-
ble, and in the absence of body forces transformation would be
unpredictable. However, due to the weight of the origami string,
gravity plays an important role in transformation especially dur-
ing this quasi-static motion. To demonstrate gravity’s effect on
transformation, we tilted the mechanism by −4.4◦ (Fig. 10(A))
and 4.4◦ (Fig. 10(B)) and applied the same tendon-driven ac-
tuation, but repeated it in both directions for several cycles. We
found out that when we tilted the mechanism by −4.4◦, as shown
in Fig. 10(A), the origami string transformed from AP-AP con-
figuration to AP-P configuration when fast dynamic excitation
was applied, and reversed when slow dynamic excitation was
applied. Moreover, when we tilted the mechanism by 4.4◦ and
provided sequential dynamic excitations to the origami string, it
transformed through four different configurations and back to its
initial configuration (Fig. 10(B)). In both cases, each cycle was
performed 10 times with identical transformations, indicating the
repeatability of the process.

CONCLUSION AND DISCUSSION
In this paper, we demonstrated the use of an origami struc-

ture as an actuator capable of generating rapid angular exci-
tation. By changing the number of elastic elements installed
in the stacked-Miura cell, we can control energy storage that
changes dynamic behavior in the stacked-Miura cell mechanism
when it snaps through the unstable equilibrium state. By utiliz-
ing the stacked-Miura cell mechanism, we achieved repeatable
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FIGURE 10: REVERSIBLE TRANSFORMATION WHEN
THE ORIGAMI STRING IS TILTED. (A) ROTATED 4.4◦

COUNTERCLOCKWISE. (B) ROTATED 4.4◦ CLOCKWISE.
N = 10.

transformation of a two-vertex origami string. We also success-
fully demonstrated that by changing dynamic input response, the
origami string will enter different configurations, implying po-
tential applications in controllable and rapid change of an overall
envelop of origami devices.

Future designs could explore the effects of using stimuli re-
sponsive materials [35] that can change its elasticity. When using
stimuli responsive materials to replace the springs, by changing
temperature, for instance, we can change the stiffness of the elas-
tic element on the cell so as to change the dynamic output of the
stacked-Miura cell. In this way, we can provide more dynamic
response to the origami string and achieve more transformations.

Even though we successfully demonstrated repeatable trans-
formation of the origami string into different configurations via
distinct inputs, we observed that the upper vertex of the origami
string only resulted in a parallel configuration in both situations
provided. To promote more complex behavior, we can change
stiffness of the origami string (e.g. adding/subtracting barrel

hinges) or inertia of each plate (e.g. adding/subtracting weights).
As mentioned in the experimental section, the stacked-

Miura cell is actuated by a tendon driven system powered by
hand. A possible replacement could be a motor to pull the ten-
don but they are usually bulky. An alternative solution is to use
a pouch motor [10,23] that can be placed inside a stacked-Miura
cell. As it inflates, it can cause the stacked-Miura cell to snap
through. This method only requires a micro pneumatic pump to
help the stacked-Miura cell reach the critical point, after which
the latter can operate on its own. For reversibility, pneumatic
artificial muscle (PAMs) [36] can be added. We expect that this
approach could be applied in repeatedly and rapidly folding com-
plex and large-scale origami devices, such as folding satellite
panels [37], shape morphing aircraft wings [38,39], and origami-
inspired antennas for wireless communication [40].
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