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A single origami crease pattern can be folded into many different structures from the flat-unfolded state,
effectively transforming in shape and function. This makes origami engineering a promising approach
to transforming machines, but predicting and controlling this transformation is difficult because the
fundamental dynamics of origami systems at the flat-unfolded state are not well understood. Working with
Miura-inspired mechanisms, we identify and validate a model to predict configuration switching in
mechanical origami systems. The model incorporates a hidden degree of freedom introduced by material
compliance in the Miura mechanism. We characterize this pseudojoint statically and dynamically to
identify its lumped stiffness and inertia and use it to create a new dynamic model. This model can be used to
predict which configuration an origami mechanism will settle in by balancing the kinetic and potential
energy of the system. We apply this model to design a branching origami structure with 17 distinct
configurations controlled by a single actuator and demonstrate reliable switching between these
configurations with tailored dynamic inputs. Given the fact that origami can replicate almost any shape,
we expect that this framework will be applicable to transformation in arbitrary structures and mechanisms.

DOI: 10.1103/PhysRevLett.121.254101

Introduction.—Origami-inspired mechanisms have
multiple strengths, including tunable mechanical properties
[1,2], transforming geometries [3,4], and ease of manufac-
turing [5,6]. Many of these traits have been formalized
into mathematical- [7,8] and physics-based [9,10] models,
enabling applications such as space deployment [11,12],
microscale manufacturing [13], and computational fabri-
cation [14]. Once folded, an ideally rigid origami mecha-
nism is constrained to a limited set of trajectories, but when
the mechanism is in the flat-unfolded state, it is in a
kinematic singularity. From this point, the mechanism can
bifurcate into two or more configurations, each with a
distinct shape and kinematic behavior, by changing the
directions of its folds [referred to collectively as the
mountain-valley (MV) assignment] [15]. In physical spec-
imens, the crease pattern is usually fixed during fabrication,
but the MV assignment can be changed, presenting a
practical approach to transformation.
Forcing a mechanism into a particular configuration

can be challenging. Many systems use low-profile actua-
tors, known as self-folding hinges [16,17], but it can be
expensive or difficult to control multiple actuators at every
hinge. Another option is to use a single actuator to
dynamically excite the mechanism into a particular MV
assignment [18]. To reliably achieve a desired MV assign-
ment, we need a dynamic model that predicts the MV
assignment from the flat-unfolded state. In this Letter, we
present such a model for origami mechanisms that incor-
porates speed, position, and material stiffness.
Existing models of origami dynamics are built on the

assumption that a fold pattern is equivalent to a set of rigid

linkages connected by rotary joints and, like other linkage
systems, has a limited number of degrees of freedom
(d.o.f.) [19]. However, preliminary results indicate that
compliance in the facets and hinges leads to additional
degrees of freedom, including in nominally 0-d.o.f. systems
[20], resulting in higher-order dynamics. This challenge is
compounded by the fact that MV transformation occurs
around the flat-unfolded state. Since this state is a kin-
ematic singularity and the system bifurcates at this point,
rigid-linkage models cannot predict the system’s behavior.
In this Letter, we study Miura-inspired structures as

archetypal origami mechanisms [11]. The fold pattern is a
tessellation of identical vertices, each with four creases.
Two of these (referred to as the spinal creases) are collinear
when flat and another two (called the peripheral creases)
are symmetric across the spine with a peripheral angle α
between the spinal and peripheral creases [Fig. 1(a)]. The
lower and upper spinal creases are folded to angles θ1 and
θ2, respectively. An ideal mechanism (in which the facets
are completely rigid) can enter two configurations from the
flat-unfolded state, each with a single degree of freedom,
so the state can be fully defined by θ1. When the spinal
creases fold in the same direction, the spinal creases remain
collinear and θ1 ¼ θ2; when they fold in opposite direc-
tions, the spinal creases are offset by a segment angle ϕ
and θ1 ¼ −θ2. We call these the parallel [Fig. 1(b)] and
antiparallel [Fig. 1(c)] configurations, respectively.
We observed additional “hidden” degrees of freedom

resulting from bending modes in the facets, as well as
stretching and off-axis twisting at the creases [1,20,21].
When a torque is applied to the Miura mechanism between
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the two segments, the upper segment will deflect, changing
θ2 and ϕ [Fig. 1(d)]. These deflections can be lumped into a
single pseudojoint at the vertex [Fig. 1(e)]. The pseudojoint
allows the upper segment of the mechanism (the two
plates adjacent to the upper spinal crease) to move
independently of the lower segment (the plates adjacent
to the lower spinal crease). Therefore, we redefine our
configurations as parallel when sgnðθ1Þ ¼ sgnðθ2Þ and
antiparallel when sgnðθ1Þ ¼ −sgnðθ2Þ.
Characterization of pseudojoint stiffness.—To character-

ize the lumped stiffness of the pseudojoint, we constructed
Miura mechanisms with plastic facets and flexural hinges
and applied a point force to the upper spinal crease while
holding θ1 fixed. The resulting torque to the pseudojoint
was measured as a function of ϕ for three different values of
θ1 (15°, 25°, and 40°) [Fig. 2(a)].
As θ1 increases, the stiffness of the pseudojoint increases

about the stable equilibrium points θ2 ¼ �θ1 and unstable

equilibrium at θ2 ¼ 0°. We repeated these experiments,
while varying hinge stiffness and facet thickness, and
observed that hinge stiffness has a substantial effect on
pseudojoint stiffness, while facet thickness has a minor
effect (Supplemental Material, Fig. S1 [22]).
We used these measurements to extrapolate the potential

energy V in the mechanism as a function of θ1 and θ2
[Fig. 2(b)] by integrating the torque τ along the displace-
ment ϕ (see Supplemental Material [22]),

Vðθ1; θ2Þ ¼
Z

ϕu

ϕ0

τðϕÞdϕ; ð1Þ

where ϕu is the angle corresponding to given angles θ1
and θ2, and ϕ0 corresponds to the point where θ2 ¼ θ1. The
potential energy plot shows there is a local energy mini-
mum when θ1 ¼ �θ2 and a local maximum when θ2 ¼ 0°.
These regimes correspond to points of stable and unstable
equilibrium, respectively (Supplemental Material, Fig. S2
[22]). Similar bistable behavior has previously been
observed in multilayer Miura structures [23,24].
Characterization of pseudojoint dynamics.—To observe

the dynamics of this mechanism, we applied pulse inputs
with a magnitude of input speed ωs to the lower spine
velocity to approximate a step input of θ1 from a start angle
θ0 ¼ 40° to a stop angle θs at 15° or 25° (Fig. 3) (see
Supplemental Material [22]). During these experiments,
we observed lag and oscillation in θ2 characteristic of an
underdamped second-order system [Figs. 4(a) and 4(b),
Fig. S3, and Video S1]. To model this behavior, we
developed a lumped-parameter model consisting of two
parameters: the stiffness kp and inertia Ip of the pseudojoint
[22]. kp was determined by linearizing the stiffness data in
Fig. 2(a) and Fig. S1,

kp ¼

8>><
>>:

dτðϕÞ
dϕ

���
θ2¼θ1

when parallel

dτðϕÞ
dϕ

���
θ2¼−θ1

when antiparallel:
ð2Þ

Based on our stiffness measurements, this assumption is
reasonable for small-amplitude oscillations because there is
a linear stiffness regime when θ2 ≈�θ1, but it is inaccurate
as θ2 approaches 0° (Fig. S2). The inertia Ip of the upper
segment was calculated from the geometry, material prop-
erties, and kinematic equations of the Miura mechanism by
first calculating the inertia of the plates around the spinal
hinge Iθ, corresponding to displacement of θ, and the
plate inertia rotating around the vertex Iϕ, corresponding to
displacement of ϕ,

Ip ¼
(
Iθ when parallel

Iϕ þ Iθð∂θ∂ϕÞ2 when antiparallel;
ð3Þ
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FIG. 2. “Pseudojoint” stiffness. (a) The vertex stiffness was
characterized by measuring the torque as a function of the segment
angle ϕ when θ1 was fixed at different values. [θ1 ¼ 15° (solid),
25° (dotted), 40° (dashed)]. Shaded region indicates standard
deviation, N ¼ 3. (b) Potential energy of the vertex as a function
of θ1 and θ2.
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FIG. 1. (a) The Miura crease pattern can enter two configura-
tions from the flat-unfolded state. (b) In the parallel configura-
tion, the lower spinal angle θ1 is equal to the upper spinal angle
θ2. (c) In the antiparallel configuration θ1 ¼ −θ2, and the upper
spinal segment rotates to an angle ϕ relative to the lower segment.
(d) In mechanical systems, the Miura pattern can bend at the
vertex even when θ1 is fixed and switch between configurations
by passing through the flat position. (e) The extra degree of
freedom can be modeled as a pseudojoint at the vertex between
the two segments with a lumped-parameter stiffness and inertia.
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These parameters are dependent on θ1 and the system
configuration, so we repeated this experiment with different
combinations of ωs, θs, and starting configuration. We
compared the natural frequency

ffiffiffiffiffiffiffiffiffiffiffiffi
kp=Ip

p
predicted by our

model with the measured frequency and found that our
predictions fell within 10% of the measured results
(Table I).
Transformation criteria: We observed that, as the system

settled, θ2 would asymptotically approach a resting posi-
tion at either θ1 or −θ1, conforming to one of the two

configurations. Under certain conditions, such as slower
input speeds, θ2 would always remain on one side of the flat
position [θ2ðtÞ ≠ 0∀ t] and the configuration would not
change [Fig. 4(a) and Figs. S3(a), S3(c), S3(g), S3(i), and
S3(j)]. However, in other cases, such as faster speeds, θ2
would cross the flat position (θ2 ¼ 0°) and settle on the
opposite side that it started, representing transformation
[Fig. 4(b) and Figs. S3(b), S3(d), and S3(h)]. As the system
approaches the flat position, it becomes increasingly non-
linear, making the linear approximation inaccurate.
We hypothesize that transformation occurs when the

kinetic energy T of the upper segment is greater than the
potential energy V at θ2 ¼ 0°. This represents when
the system has enough kinetic energy to cross the strain
energy local maximum and settle in the configuration on
the other side. Because the potential energy is correlated
with stiffness and kinetic energy is correlated with mass
and speed, stiffer and slower mechanisms are less likely
to transform, while heavier and faster structures are more
likely to transform. We performed 93 experiments consist-
ing of single trials with a different combination of θs, ωs,
starting configuration, hinge width, and facet thickness
(Supplemental Material, Data S1 [22]). We calculated T
from the angular velocities _θ2 and _ϕ so that T ¼ ðIθ _θ22 þ
Iϕ _ϕ

2Þ=2 [22]. Some of the parameter combinations were
tested three times, and in each set of experiments with
identical parameters, transformation occurred in all trials or
none of them, demonstrating the repeatability of this
approach [Figs. 4(a), 4(b), 4(d), and 4(e) and Fig. S3].
Figure 4(c) plots each of these experiments with a

diagonal line indicating where the kinetic energy equals
the potential energy. In 90 out of 93 experiments, the
mechanism transformed when T > V and did not when
T < V, validating our hypothesis. In the three remaining
cases, T ≈ V, and we expect that the error is due to damping
in the system, which we neglected. Subsets of this data are
plotted in Fig. S4 to differentiate the effect of the various
parameters on T and V.
Mechanism passing through the flat-unfolded state:

We extend this model to predict transformation when the

TABLE I. Experimental parameters and results of step input experiments.

Related figure 4(a) 4(b) S3(a) S3(b) S3(c) S3(d) S3(g) S3(h) S3(i) S3(j)

Speed ωs (rad/s) 7.8 14.6 9.5 38.7 9.5 38.7 2.5 12.6 8.2 11.8
Stop angle θs (°) 15 15 15 15 15 15 15 15 25 25

After transition:
Configuration [parallel (P), antiparallel (AP)] AP P P AP P AP AP P AP AP
Stiffness kp (mNm=rad) 57.5 843.0 843.0 57.5 843.0 57.5 57.5 843.0 101.1 101.1
Inertia Ip (mgm4) 13.0 12.7 12.7 13.0 12.7 12.0 13.0 12.7 13.1 13.1
Modeled natural frequency (rad/s) 66.6 258.1 258.1 66.6 258.1 66.6 66.6 258.1 87.8 87.8
Experimental natural frequency (rad/s) 71.9 265.4 274.2 59.8 263.0 59.8 73.4 252.9 92.2 82.5

Natural frequency percent error (%) 8 3 6 10 2 10 10 2 5 6
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FIG. 3. Experimental setup to test the dynamic response of
Miura mechanisms. (a) The input approximates a pulse input to
the lower spine velocity of magnitude ωs to a certain stop angle
θs. (b) We measured θ2 and ϕ by tracking five black markers.
(c) We tested the dynamic behavior of the Miura mechanism by
installing it in this experimental test bed that actuated the lower
spinal crease through a spring-driven slide. Spring-loaded pins
braked actuation at the stop angle.
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mechanism passes through the flat-unfolded state. We
performed similar pulse input experiments in which
θ0 ¼ 25° and θs ¼ −25°. Because of the phase lag between
θ1 and θ2 (Fig. 4) there is a “window” in which trans-
formation can occur when θ1 has crossed the flat state and
θ2 has not, and the size of this window is dependent on the
pseudojoint stiffness. In these experiments, θ1 is crossing
the origin, so θ2 must also cross the origin for the
mechanism to stay in the same configuration. Therefore,
we expect that a system in which T < V transforms
[Fig. 4(d) and Fig. S5(c)] and a system in which T > V
does not [Fig. 4(e) and Fig. S5(d)]. We compared T and V
in 46 different trials and this model accurately predicted
transformation in 42 of them [Fig. 4(f) and Data S2]. We
observed that this model was less accurate in part because
strain energy was stored in the mechanism as it passed
through the flat position, changing the energy balance at the
transition point. We expect that a more detailed dynamic
model would have a greater predictive accuracy, but the
current model is sufficient for identifying reliable trans-
formation patterns.
Implementation in a multiconfiguration mechanism.—

We built a branching origami structure consisting of five
Miura vertices to show that this approach to transformation
applies to vertices in series and in parallel (Fig. S6). This

device has 17 nontrivial configurations [Fig. 5(a) and
Fig. S7]. The branches have different facet masses and
hinge stiffnesses so that each vertex has a different pseu-
dojoint stiffness and inertia, breaking the dynamic symmetry
the mechanism.
The branching origami mechanism was actuated at a

fixed speed of approximately 3.4 rad=s from a starting
position of 40° to an arbitrary stop angle and then back to
40°. Eight different stop angles (16°, 13°, 10°, 7°, −27°,
−30°, −40°, and −45°) were used to create eight distinct
actuation signals, and these signals were applied to trans-
form the mechanism between configurations (Fig. 5 and
Fig. S8). Fifty-eight repeatable transformations (from one
specific configuration to another in response to a specific
input) were identified and tested ten times (Table S1) with
a 100% success rate. A sample of these are shown in
Video S2 to illustrate the process.
We applied the model to each vertex in the branching

structure, accounting for additional factors not seen in the
single vertex experiments, including gravity and linear
momentum (Tables S2 and S3). The model correctly
predicted 88% of the vertex configurations [22]. These
results show that the model can be applied to multivertex
systems, but also indicate challenges in modeling multi-
vertex systems. The majority of inaccurate predictions were

(a) (b) (c)

(d) (e) (f)

FIG. 4. Dynamic behavior of the Miura vertex. θ1 (solid), θ2 (dotted), and ϕ (dashed) are plotted after a step input to the lower spinal
angle, shaded region indicates standard deviation, N ¼ 3. (a) When actuated at a low speed (ωs ¼ 7.8 rad=s), it remains in the starting
configuration. (b) When actuated at a higher speed (ωs ¼ 14.6 rad=s), it transforms. (c) Ninety-three experiments are plotted as a
function of their kinetic energy T and potential energy V. Transformations are plotted as black dots, nontransforming experiments as
white dots, and the line indicates T ¼ V. (d) When the mechanism is actuated at a low speed (ωs ¼ 1.2 rad=s) through the flat-unfolded
state, it transforms. (e) At higher speeds (ωs ¼ 13.7 rad=s), it remains in the starting configuration. (f) Forty-six experiments, in which
the mechanism passes through the flat state, are plotted as a function of T and V.
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due to a small subset of transformations, suggesting that
there are systemic factors we are not accounting for,
such as configuration-dependent coupling between vertices
(Tables S4 and S5).
Conclusion.—These results demonstrate that reliable

origami transformation can be accomplished with a single
actuator. Compared to distributed self-folding [25], trans-
formation by dynamic excitation has the potential to reduce
costs and control complexity and transformation time.
Unlike previous examples of origami machines that harness
facet compliance [26], the transformation is discrete and,
aside from the transition point, the mechanism generally
behaves according to the direct kinematic model. The
branching mechanism results indicate that the model
reasonably captures reconfiguration of multivertex patterns.
Future work could improve the model by investigating

coupling between vertices, using nonlinear techniques to
model multiple pseudojoints in series and system bifurca-
tions to model configuration switching. We expect that
future work will also generalize this transformation tech-
nique to apply to vertices with more than four creases by
introducing additional hidden degrees of freedom to the
vertex.
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