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Shake and Take: Fast Transformation of an
Origami Gripper

Chang Liu , Samuel J. Wohlever , Maria B. Ou, Taskin Padir , and Samuel M. Felton

Abstract—Origami structures can transform their form and
function by changing the direction of their folds. This reconfigu-
ration can enable multifunctional robots, but doing so requires a
fast, robust, and repeatable actuation method. In this article, we
present an origami gripper that uses dynamic transformation to
change its kinematic behavior in less than a second. We characterize
individual vertices to show that the transformation is predictable
and repeatable for different designs and orientations. We then
apply it to a multivertex template that is capable of a wide range of
shapes and motion patterns, indicating that transformation can be
generalized to complex and functional machines. To demonstrate
this, we built a transforming origami gripper on a robotic arm to
pick up multiple objects. Demonstrations show that the gripper
can quickly reconfigure between three different grasping modes
and has sufficient stiffness to engage with and lift multiple objects
with distinct geometries.

Index Terms—Dynamics, gripper design, mechanism design,
origami, origami robots, reconfigurable robots, robotic grasping,
transformation.

I. INTRODUCTION

ORIGAMI-INSPIRED engineering has appeared in a
variety of applications, including micromanufactur-

ing [1], [2], antennas [3], [4], space deployment [5]–[7], and
robotics [8]–[10]. One particularly exciting application is trans-
forming robots, in which a machine changes its shape and
kinematic behavior by changing the way its creases are folded.
There are many examples of machines that transform from “flat”
to “functional” configurations [11], [12] and others that switch
between multiple 3-D shapes [13], [14].

This transformation can be driven by a variety of actuation
techniques. Self-folding describes a large range of low-profile
torsional actuators embedded on the creases of an origami
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structure to induce folding [15]. Self-folding has been demon-
strated with hydrogels [16]–[18], shape memory materials [19],
[20], magnets [14], [21], and many other phenomena. Other
origami machines have used different actuation techniques,
including cables routed through an origami arm [22], spring-
loaded wings [23], and centrifugal forces [24].

Unfortunately, many physical examples of origami transfor-
mation cannot perform useful tasks. In some, the actuation time
is too slow for real-world applications: while some millimeter-
scale devices can fold in just seconds [25], machines larger
than a few centimeters can take anywhere from 40 s [22] to
minutes [26] or even hours [18] to complete their transformation.
Other methods are not energy efficient. The first autonomously
self-folding robot, for instance, took 8.8 kJ to fold, at an ef-
ficiency under 5× 10−7 [27]. Many self-folding machines are
also too compliant to act against their environment—origami
machines are inherently slender and their low-profile actua-
tors exert minimal torque, limiting overall mass. For example,
pneumatic self-folding grippers were only able to hold paper
objects [28], and hinges actuated by shape memory polymers
could only fold faces under 20 cm long against gravity [29].

Finally, origami mechanisms are prone to “misfolding”—
folding one or more creases in the wrong direction—making
transformation risky. The flat state of an origami mechanism
is a kinematic singularity, so even constrained mechanisms
can become uncontrollable when flat [30]. Because origami
transformation requires some or all of the creases to pass through
the flat state, the process is susceptible to misfolding [31], [32],
and this risk is exacerbated when combined with the compliance
and slow speeds mentioned earlier.

In contrast, dynamic origami transformation [33] is a rel-
atively new approach that is both fast and reliable. This
transformation can be described conceptually by considering
each vertex in the origami pattern as a bistable mechanism.
Kinematically, the origami pattern is constrained, but if it is
excited dynamically, the inertia of the facets causes the mecha-
nism to deform. If the mechanism deforms far enough, some of
the creases may snap through the unstable equilibrium point
and change their fold direction. This changes the kinematic
relationship between the creases and “transforms” the overall
mechanism. Previous studies have shown that this transforma-
tion can be actuated with a single electric motor [33], [34] or
spring-loaded cell [35] and can occur in less than a second for
structures up to 35 cm in length.

While this method is faster and more reliable than previ-
ous self-folding actuators, it has its own limitations. Because
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Fig. 1. Dynamically reconfigurable origami gripper that can perform three
different grasps by transforming the kinematics of its fingers. These grasps
include (a) a radial pinch, (b) a cylindrical wrap, and (c) a forklift-style lift
for high loads.

transformation required a relatively low stiffness, previous im-
plementations were too compliant to be functional. To address
this issue, we developed a new mechanical template for origami
vertices that has a nonlinear stiffness profile. Each hinge exhibits
backlash—some nontrivial displacement with zero stiffness.
Within the backlash range, transformation requires minimal
energy. Furthermore, the backlash of each vertex can be altered
by folding or unfolding the mechanism. Effectively, we can “turn
OFF” transformation by folding the mechanism and “turn it ON”
by unfolding it to a near-flat state.

To demonstrate the efficacy of this concept, we first char-
acterized individual vertices that are the building blocks of our
origami systems. We measured their stiffness and transformation
properties under a variety of orientations to understand how
they would behave in realistic applications. We then applied this
transformation to a multivertex template known as an origami
string [36]. These strings are kinematically capable of tracing
any path in 3-D space [37] and can exhibit a wide range of mo-
tion patterns, so demonstrating transformation in these strings
shows that transformation can be generalized to many different
machines. Finally, we constructed a robotic gripper with four
origami fingers that could transform between three different
grasp modes through dynamic excitation (see Fig. 1). We demon-
strated that this gripper could grab multiple objects with different
grasps and reliably transform between those grasps in less than
a second.

II. VERTEX DESIGN AND FABRICATION

A. Vertex Design

The mechanisms in this article are based on the origami
string [36], [37]. The base element of this string is the Miura
vertex [see Fig. 2(a)]. This vertex comprises four creases: two
collinear spinal creases and two peripheral creases offset from

Fig. 2. Vertex design and fabrication. (a) Crease pattern. (b) Parallel configu-
ration. (c) Antiparallel configuration. (d) Plates are 3-D printed. (e) M2 plastic
nuts are inserted between segment sheaths. Pins are inserted along the hinges to
align the plates.

the spine by angles α1 and α2. It has a single degree of freedom.
We consider the fold angle of the lower spinal crease θ1 to be the
input and the upper spinal crease θ2 to be an output. Each Miura
vertex has two configurations: the parallel configuration is when
central spinal creases are collinear and the peripheral creases are
flat [see Fig. 2(b)], and the antiparallel configuration is when
central spinal creases are offset by an angleϕa and the peripheral
creases have a nonzero fold angle [see Fig. 2(c)]. The kinematic
relationships between these angles can be found in previous
publications [14], [33], [36], [38]. In either configuration, the
magnitude of the spinal angles is equal, so |θ1| = |θ2|. When
connected into an origami string, every vertex shares a single
spinal line, and every spinal crease along the line has the same
fold angle. In this way, when one crease at the base of the string
is folded, the entire structure actuates in a constrained manner
with a trajectory determined by the fold pattern.

B. Vertex Fabrication

We printed facets as individual pieces with a Prusa i3 MK3s
using polylactic acid plastic. Each plate included segmented
sheaths along the crease edges [see Fig. 2(d)] to house 1/16-in-
diameter dowel pins secured with M2 plastic nuts [see Fig. 2(e)].
Creases were assembled by inserting the pins through the inter-
leaved sheaths of the adjacent facets. In contrast to the flexural
hinges used in many other origami mechanisms, these hinges
have high off-axis stiffness and resistance to deflections outside
of the kinematically constrained positions. However, the toler-
ances in the hinges were made deliberately so that an assembled
vertex could deflect slightly beyond its constraints under negli-
gible loads. We refer to this deflection as the backlash ϕb and
quantified it by holding one side of the vertex flat and measuring
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Fig. 3. Backlash ϕb is quantified as the maximum displacement of the upper
spinal crease when the lower spinal crease is held flat, without strain in the
materials. (a) Small backlash, isometric view. (b) Large backlash, isometric
view. (c) Small backlash, side view. (d) Large backlash, side view.

the maximum deflection of the other side under no-load condi-
tions (see Fig. 3). This design makes the vertex stiffness highly
nonlinear, with a near-zero-stiffness regime within the backlash
range and a high stiffness outside of it.

The vertex samples had the following parameters:α1 = α2 =
α = 45◦, L1 = 30 mm, L2 = 52.5 mm, and w = 22.5 mm [see
Fig. 2(a)]. Holes were put on the faces of plates 1 and 2 [see
Fig. 2(d)] to mount the vertex samples to the test base, and
the holes on plates 3 and 4 [see Fig. 2(d)] were used to mount
extra masses. The barrel hinge holes on plates 1 and 3 were
drilled using a 1.58-mm drill bit for a tighter fit, while the
hinge holes on plates 2 and 4 were made using a 1.66-mm drill
bit for more clearance and backlash. Samples with a smaller
backlash (ϕb = 5.75◦) were built with four barrel segments at
each hinge [see Fig. 3(a) and (c)] and samples with a larger
backlash (ϕb = 11.25◦) had three barrel segments per hinge
[see Fig. 3(b) and (d)].

III. VERTEX CHARACTERIZATION

Transformation can be modeled as a comparison between the
kinetic energy T of the facets and the transformation energy
threshold Vt that must be overcome for the vertex to change
its configuration [33]. To validate this model on the new hinge
design, we first calculated Vt of individual vertices using their
geometry, orientation, and measured stiffness. We then applied
a linear displacement to each vertex, calculated T based on its
velocity, inertia, and orientation, and observed whether or not
transformation occurred.

A. Transformation Energy

The strain in a vertex is minimized when it is in one of
the two kinematically constrained states: ϕ = ϕ0 or ϕ = ϕa.
However, it can be deformed into other states and even forced
between them. The transformation energy Vt is the amount of
energy that must be put into the system at one stable state to
overcome the local potential energy maximum and enter the
other stable state. To calculate Vt, we first measured the vertex
stiffness and used that to calculate the strain energy Vs of the
vertex over its displacementϕ. We used that curve to identify the
local maximum, which is the threshold for transformation. We
then calculated the change in gravitational energy Vg between

the stable and threshold states and modeled the transformation
energy as the sum of these two components.

1) Stiffness Measurements: To characterize the nonlinear
stiffness of individual vertices, we measured the stiffness torque
τ as a function of displacementϕ. We tested two sets of samples:
one group had a smaller backlashϕb = 5.75◦, and the other had a
larger backlashϕb = 11.25◦. The lower segment of each sample
was folded to an angle θ1 and fixed at its base (see Fig. 4). For
the smaller backlash, θ1 was fixed at 5◦, 7.5◦, 10◦, and 12.5◦; for
the larger backlash, θ1 was fixed at 10◦, 12.5◦, 15◦, and 17.5◦.
We applied a point force F to the tip of the upper spinal crease
at a distance L from the vertex with a Mecmesin MultiTest 2.5i
and calculated τ = F · L. We measured the displacement of the
probe to calculate the deflection ofϕ between the spinal creases.
The probe displaced linearly 50 mm, resulting in a total angular
displacement of 40◦. The displacement was measured in four
sections, alternating the direction of the applied force to avoid
snap-through behavior. Each set of parameters was tested three
times.

2) Strain Energy Calculations: The strain energy Vs(ϕ) is
equal to the work done on the vertex for a given deflection ϕ,
so we integrated the stiffness curve τ(ϕ) to determine Vs along
the entire displacement profile

Vs(ϕ) =

∫ ϕ

0

τ(x)dx. (1)

From this curve, we identified the unstable equilibrium point
ϕu, where Vs(ϕu) is the local maximum between the two
stable configurations. The change in strain energy necessary for
transformation ΔVs is the difference between Vs at ϕu and at its
starting positionϕ0, which occurs at one of two potential points:
ϕ0 = 0 for the parallel starting configuration or ϕ0 = ϕa for the
antiparallel starting configuration. For all of the single-vertex
experiments, α1 = α2 = α = 45◦

φu = max{Vs(ϕ) : 0 < ϕ < ϕa} (2)

ϕ0 =

{
0, when parallel

2 arctan(sin θ1 tanα), when antiparallel
(3)

ΔVs = Vs(ϕu)− Vs(ϕ0). (4)

3) Stiffness and Strain Energy Results: We observed that
there was a region of negligible stiffness representing the back-
lash at two locations on the force–displacement curve; one
region was centered at ϕ = 0◦ and represents the kinematic
solution of the parallel configuration, and the other occurred
at ϕ = ϕa, the kinematic solution for the antiparallel configura-
tion. As θ1 decreased, these regions came closer together until
they merged into a single region [see Fig. 5(a) and (c)]. In this
region, the vertex can freely transform between the parallel and
antiparallel configurations.

In the strain energy plots, the two stable configurations are
represented by the local minima, and the peak indicates the
energy necessary to transform the vertex from one configuration
to the other [see Fig. 5(b) and (d)]. This peak disappears when the
fold angle θ1 is sufficiently small, indicating that transformation
will occur with negligible kinetic energy.
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Fig. 4. Stiffness testing rig, with the corresponding section of the torque curve τ being measured. Samples were secured to a fixture with the base segment set
at an angle θ1. F is the tensile force provided by a load cell, ϕ is the displacement between the segments, and L is the distance between the vertex and the point
where the force is applied.

Fig. 5. Stiffness torque τ and strain energy Vs profiles of single vertices over their displacement ϕ. (a) τ of a vertex with a small backlash and different input
angles θ1 [5◦ (solid red), 7.5◦ (solid magenta), 10◦ (solid blue), and 12.5◦ (solid black)]. (b) Vs of the same. (c) τ for a vertex with a large backlash and different
θ1 [10◦ (dashed blue), 12.5◦ (dashed black), 15◦ (dashed green), and 17.5◦ (dashed orange)]. (d) Vs of the same. (e) τ of vertices with a small backlash (solid
blue) and large backlash (dashed blue) at θ1 = 10◦. (f) Vs of the same. Shaded areas indicate standard deviation, N = 3.

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 03,2021 at 12:01:06 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: SHAKE AND TAKE: FAST TRANSFORMATION OF AN ORIGAMI GRIPPER 5

When comparing the stiffness of samples with different back-
lash values, we see that the size of the backlash region has a
substantial effect on the stiffness profile [see Fig. 5(e)] and strain
energy peak [see Fig. 5(f)]. At θ1 = 10◦, the small backlash
still has a bistable profile, but the large backlash has a single
zero-stiffness region with no local maximum.

4) Transformation Energy Calculations: We modeled the
transformation energy Vt as the sum of the change in strain
energy ΔVs and change in gravitational energy ΔVg between
the initial position ϕ0 and transformation threshold ϕu. The
gravitational energy Vg of the vertex is dependent on the weight
and orientation of the facets on the distal segment

ΔVg = Vg(ϕu)− Vg(ϕ0) (5)

= Lgmg [sin(ϕu − η)− sin(ϕ0 − η)] (6)

Vt = ΔVs +ΔVg (7)

where m is the upper segment’s mass, g is the gravitational
acceleration,Lg is the distance between the vertex and the upper
segment’s center of mass, and η is the tilt angle.

B. Kinetic Energy

The kinetic energy T of the upper segments was calculated
from their inertia and the velocity vs. We measured the velocity
of the base vb with a high-speed camera (Sony Cyber-shot
RX100 V, 960 frames/s) and used it to calculate T

vs = vb cosϕ0 cos γ (8)

T =
1

2
mv2s (9)

where vb is the base velocity,m is the mass of the upper segment,
and γ is the offset angle.

C. Model Validation

Previous papers posited that (for situations where the input
θ1(t) �= 0◦ ∀t) the mechanism transforms if and only if the
kinetic energy T of the facets above the vertex is greater than
the transformation energy Vt of the vertex [33]. To validate this
hypothesis with the new hinge design, we constructed samples
with small or large backlashes, fixed their input angle θ1, and
excited them linearly by accelerating and then stopping them in a
direction orthogonal to their base [see Figs. 6 and 7(a) and (b)].
This differs from previous papers [33]–[35], in which kinetic
energy came from the input velocity θ̇1 and corresponding
rotation along ϕ; these new experiments more closely resemble
the motions used to transform the gripper.

We built a testing device [see Fig. 6(a)] that accelerated the
vertex in a spring-loaded fixture and then decelerated it with a
physical block to approximate an instantaneous stop of the lower
segment. The input angle θ1 of the lower segment was fixed by
installing the vertex between a set of plates that were rigidly
connected to the accelerating fixture. A high-speed camera was
placed above the vertex to measure the velocity of the base [see
Fig. 6(b)].

Different velocities were achieved by installing different num-
bers of springs in the fixture and changing their initial deflection.

Fig. 6. (a) Dynamic testing fixture used to characterize the vertex dynamics.
(b) Top view of the vertex in the fixture. We calculated the translation velocity
of the Miura vertex samples by tracking the two black dots on either side.

In some experiments, the facet inertia was modified by adding
mass to the upper facets (see Table I). These parameters were
chosen so that the kinetic energy of the vertex was slightly less
than or greater than the transformation energy, with a difference
less than 20%. This was done to test how accurate our model was;
by bracketing the expected transformation point with experi-
mental parameters on either side, the experiments would indicate
that the model is accurate if we observed transformation when
the kinetic energy was slightly greater than the transformation
energy, and no transformation when the kinetic energy was
slightly less than the transformation energy.

We performed these experiments in a variety of conditions
chosen to replicate the orientations we would observe in real-
world operations (see Fig. 7). In total, we tested for transforma-
tion with 84 different sets of parameters, and each set was tested
three times. For each set of parameters, we compared the ratio
of the kinetic energy to the transformation energy and observed
whether the vertex transformed or not (see Fig. 8). We found
that all experiments matched our hypothesis (Dataset S1).

In the first set of experiments, all samples had a backlash
ϕb = 5.75◦, with the lower segment oriented vertically and the
sample accelerated along the vertex midplane [see Fig. 7(a) and
(b)]. The input θ1 was set to four different values (5◦, 7.5◦, 10◦,
and 12.5◦), and both initial configurations were tested. For each
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Fig. 7. Dynamic testing cases. Varying backlash, input angle, and initial configuration: (a) an example of large backlash sample with parallel initial configuration
and (b) an example of small backlash sample with antiparallel initial configuration. Varying tilt angle η: (c) isometric view and (d) side view. Varying offset angle
γ: (e) isometric view and (f) top view. (g) Rotational dynamic testing. κ is the rotational stop angle. Vb is the moving velocity of the base. Vs is the moving velocity
of upper two plates. θ̇b is the rotational speed.

TABLE I
EXTRA MASS ON VERTICES

Fig. 8. Ratio of kinetic to transformation energy in attempted transformations
of single vertices under 84 different sets of parameters. Circles indicate samples
that transformed and triangles indicate samples that did not transform. The line
indicates when T = Vt, the threshold for transformation. Error bars indicate
standard deviation, with sample size N = 3.

sample, dynamic testing was run with two velocities selected
based on the criteria mentioned above, resulting in 16 total sets
of parameters. Results can be seen in Fig. 9(a).

To observe the effect of backlash on transformation, we tested
samples withϕb = 11.25◦. The input θ1 was set to four different
values (10◦, 12.5◦, 15◦, and 17.5◦). For each sample, dynamic
testing was run with two velocities selected based on the criteria
mentioned above, resulting in 16 total sets of parameters. Results
can be seen in Fig. 9(b).

To observe the effect of gravity on our model, we tilted the
vertices to change the relative direction of gravity on the facets
[see Fig. 7(c) and (d)]. In these experiments, all samples had
a backlash ϕb = 5.75◦ and were accelerated along the vertex
midplane. Samples had a fixed input θ1 of 7.5◦ or 10◦ and one
of four different tilt angles η (−90◦, −45◦, 45◦, and 90◦) [see
Fig. 7(c) and (d)]. For each sample, dynamic testing was run with
two velocities selected based on the criteria mentioned above,
resulting in 16 total sets of parameters. Results can be seen in
Fig. 9(c) and (d).

To test our model under nonorthogonal movements, we ac-
celerated the vertices in a direction offset from the midplane
[see Fig. 7(e) and (f)]. All samples had a backlash ϕb = 5.75◦

and were oriented vertically. Samples had a fixed input θ1 of
7.5◦ or 10◦ and were accelerated at an offset angle γ = 45◦ [see
Fig. 7(e) and (f)]. For each sample, dynamic testing was run with
two velocities selected based on the criteria mentioned above,
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Fig. 9. Kinetic energy T and transformation energy Vt for all dynamic excitation experiments of individual vertices, grouped by parameter. Circles indicate
samples that transformed and triangles indicate samples that did not transform. The lines indicate whenT = Vt, the threshold for transformation. Error bars indicate
standard deviation, with sample size N = 3. (a) Varying input angle θ1 for small backlash mechanism, while tilt angle η = 0◦ and offset angle γ = 0◦. (b) Varying
input angle θ1 for large backlash mechanism, while tilt angle η = 0◦ and offset angle γ = 0◦. (c) Varying tilt angle η for small backlash mechanism, while input
angle θ1 = 7.5◦ and offset angle γ = 0◦. (d) Varying tilt angle η for small backlash mechanism, while input angle θ1 = 10◦ and offset angle γ = 0◦. (e) Varying
offset angle γ for small backlash mechanism, while input angle θ1 = 7.5◦ and tilt angle η = 0◦. (f) Varying offset angle γ for small backlash mechanism, while
input angle θ1 = 10◦ and tilt angle η = 0◦. (g) Rotational movement, with input angle θ1 = 7.5◦ and small backlash and stopped at κ = 0◦, 30◦, and 60◦.

resulting in eight total sets of parameters. Results can be seen in
Fig. 9(e) and (f).

To observe the behavior of the vertices under rotation, we
installed them in a fixture that rotated the vertices around a point
7.3 cm from their base [see Fig. 7(g)]. All samples had a backlash
ϕb = 5.75◦, a fixed input θ1 = 7.5◦, and were accelerated along
the midplane. Results can be seen in Fig. 9(g).

In summary, these experiments show that this transformation
is robust enough to work under different orientations, and our
model remains valid for the different conditions that could occur
in a robotic system.

IV. GRIPPER DESIGN AND CHARACTERIZATION

A. Gripper Design

The gripper included four fingers, each of which was an
origami string with three vertices [see Fig. 10(a)]. The gripper
was capable of performing three different grasps depending on
its mode. The pinch mode was designed to grasp objects by
applying four radial point forces to an object. It was ideal for
picking up smaller objects. The wrap mode was designed to fully
encircle an object in one plane, ideal for long thin objects. The
forklift mode was designed for larger and heavier objects that
could not be enclosed; we demonstrated that the forklift could
lift objects up to 11 kg in mass. The complete gripper weighed
650 g, and each finger weighed 45 g. The gripper base was
162.5 × 180 × 70 mm thick, and the fingers were each 190 mm
long when straight.

In each mode, the fingers moved along a different trajectory.
In the pinch mode, the fingers pinched inward [see Fig. 10(b)]; in
the wrap mode, they curled in a spiral [see Fig. 10(c)]; and in the
forklift mode, two fingers stayed straight [see Fig. 10(d)], while
the other two curled out of the way. Each finger was actuated
by an electric motor. When the motor turned, the base of each
finger folded or unfolded, causing the finger to close or open in
a kinematically constrained trajectory.

The fingers were transformed between the pinch, wrap, and
neutral trajectories by reconfiguring their vertices. One way to
think about reconfiguration of an origami string is that a vertex
is inactive when parallel; the spine remains straight and the
string behaves as if the vertex was not there. In contrast, when a
vertex is antiparallel, the spine bends and the vertex contributes
nontrivially to the string kinematics. In this way, we can design
fingers by superimposing two origami strings. When we want the
kinematics of one string to be active, we configure the vertices
of the other string to be parallel, making them kinematically
“invisible.”

To design the fingers’ crease patterns, we first derived α1

and α2 from the desired kinematics of each configuration, using
geometric models developed in previous work [36]–[39]. This
resulted in two vertices for the pinch and two vertices for the
wrap; the neutral position did not require any vertices because
the string was straight. We found that the distal vertex for both
designs was identical, so we combined the two configurations by
incorporating three vertices in each finger—the first vertex de-
rived from the wrap kinematics, the second vertex from the pinch
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Fig. 10. Gripper design. (a) Finger actuation mechanism. (b) Gripper in radial pinch mode, (c) cylindrical wrap mode, and (d) forklift mode. (e) Origami string
template used to design the fingers. w is the width of each plates. Lj is the length of the segment j. αn are the angles between spinal creases and peripheral creases.
β is the fingertip angle. (f) Red finger in a pinch configuration. (g) Blue finger in a pinch configuration. (h) Red finger in a wrap configuration. (i) Blue finger in a
wrap configuration. (j) Red finger in a neutral configuration. (k) Blue finger in a neutral configuration.

kinematics, and the third vertex from both kinematic solutions.
When the finger needed to perform a wrap, the second vertex
was configured to parallel so that it did not affect the kinematics.
When the finger was performing a pinch, the first vertex was
set to parallel. In summary, the pinch configuration was when
the first, second, and third vertices were parallel, antiparallel,
and antiparallel, respectively; the wrap configuration was when
the vertices were antiparallel, parallel, and antiparallel; and the
neutral configuration was when the vertices are all parallel.

The gripper included two finger designs that are differentiated
by their color (see Fig. 10), red or blue. Both fingers have
similar neutral and wrap kinematics, but their pinching is canted
either left (red) or right (blue). The fingers were mounted in
a rectangular pattern with same-colored fingers on opposite
corners. On each side, a pair of fingers was mounted on an angled
plate so that adjacent fingers were 110 mm apart and offset by 30◦

[see Fig. 10(b)]. The gripper was mounted on a standard UR3e
arm. This arm transformed the gripper by flicking the fingers in
a controlled manner, causing the vertices to reconfigure between
the three possible grasp modes.

After assembly, we characterized the stiffness of each finger
to determine the appropriate dynamic input for transformation.
We set the input angle θ1 of the finger to 12.5◦ and measured the
stiffness torque τ of each vertex as a function of displacement
ϕ three times using the same method we used on the individual
vertices (see Fig. 11). We calculated the strain energy profile
from these measurements (see Fig. 12).

The fingers were driven by a dc motor (Pololu #3080, with
#4761 encoder) and a bar-linkage mechanism (see Fig. 13). By
controlling the rotation of the dc motor, the rotational motion
is translated to a bending motion (input) of the finger’s lower
two plates through the motor shaft and finger shafts. The finger
dimensions (length, width, and αi) can be found in Table II .
M3 screws and nuts were added to some of the faces to change
their inertia (see Table III). This ensured that the fingers had the
appropriate kinetic energy during each transformation step.

Six extension springs were included in the design to preload
the motor-driven linkages and stabilize the system (see Fig. 14).
They were 31.75 mm long with ak-value of 49 N/m. Two springs
were installed between opposing fingers to pretension the lower
vertices, and four were connected between the middle vertices
of each finger and the gripper base.

Mechanical stops were included on two hinges of each finger
(see Fig. 15). Some potential finger configurations result in
nonfunctional grasp modes, and it was simpler to physically
prevent these configurations than design our transformation
process around avoiding them.

B. Finger Transformation Process

1) Multivertex Transformation: When multiple vertices are
transforming simultaneously, the criteria for transformation
can change. If one vertex transforms and it shares a spinal
crease with another vertex, the transformation criteria for the
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TABLE II
FINGER DIMENSIONS

Fig. 11. Stiffness torque τ of finger vertices when θ1 = 12.5◦. (a) Red finger,
vertex 1. (b) Red finger, vertex 2. (c) Blue finger, vertex 1. (d) Blue finger, vertex
2. Shaded areas indicate standard deviation, with sample size N = 3.

Fig. 12. Finger strain energyVs when θ1 = 12.5◦. (a) Red finger, vertex 1. (b)
Red finger, vertex 2. (c) Blue finger, vertex 1. (d) Blue finger, vertex 2. Shaded
areas indicate standard deviation, with sample size N = 3.

Fig. 13. Finger actuation mechanism.

TABLE III
EXTRA MASS ON FINGERS

follow-on vertex flip: it transforms if Vt > T and it does
not transform if T > Vt. We refer to this condition as pass-
through because the lower spinal crease passes through the flat
state. This behavior was previously studied in [33] and can
be understood conceptually by the fact that, when the lower
spinal crease changes its fold direction (mountain to valley
or vice versa), the vertex only transforms if the upper spinal
crease does not change direction. Lower kinetic energy is as-
sociated with the upper spinal crease remaining folded in its
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Fig. 14. Six springs are included in the gripper for pretension, including two
springs that connect the first segment of opposing fingers and four springs that
connect the second segment of each finger to the base.

Fig. 15. Finger stops. (a) Red figure design when flat. (b) Back view of the
red finger, showing the location of stops (circled). (c) Blue finger design when
flat. (d) Back view of the blue finger, showing the location of stops (circled).

original direction, and therefore, lower kinetic energy results in
transformation.

In the fingers, we observed this pass-through transformation
(or lack of transformation) whenever a lower vertex transformed.
Therefore, when considering finger transformation, it may be
easier, conceptually, to consider the fold directions of the seg-
ments (see Fig. 16). Here, we refer to a segment with the convex
side pointing toward the gripper palm as a valley (V) fold, and
a segment with the convex side pointing away from the palm as
a mountain (M) fold.

2) Finger Stops: The mechanical stops prevented their corre-
sponding hinges from folding in one direction (see Fig. 15). One
stop was located on the spinal crease of the fourth segment. This
kept the fourth segment folded in the mountain direction, which
forced the third vertex to be parallel when the third segment
was in the mountain direction and antiparallel when the third
segment was in the valley direction.

The second stop was on one of the peripheral creases con-
nected to the second vertex. This kept that crease in the mountain
direction. When the second segment was in the valley direction,
the second vertex was forced into the parallel configuration.

Fig. 16. Crease fold directions during transformation. Because the vertices
are connected, the transformation criteria of one vertex depend on its lower
neighbor’s configuration through the direction of their shared crease.

However, when the second segment was in the mountain direc-
tion, the second vertex could enter either configuration because
the antiparallel configuration works with the peripheral creases
in the mountain direction, and the parallel configuration works
when the parallel creases are flat.

3) Transformation Energy: We calculated the transformation
energyVi,t at each vertex iusing a similar model as in Section III-
A, including both a strain and gravitational energy component.
We calculated the strain energy component ΔVi,s by measuring
the stiffness at each vertex (see Fig. 11) and integrating to
calculate the potential energy (see Fig. 12)

Vi,t = ΔVi,s +ΔVi,g (10)

Vi,s(ϕ) =

∫ ϕ

0

τ(x)dx (11)

ΔVi,s = Vi,s(ϕu)− Vi,s(ϕ0). (12)

The model for the gravitational energy component ΔVi,g differs
slightly because it depends on the weight of all facets connected
to the distal side of the vertex, so we present separate sets of
equations for each vertex. We first calculated the tilt of each
segment relative to the ground (see Fig. 17)

λ0 = ξ − ρ

2
+

π

2
(13)

λ1,0 = λ0 − ϕ1,0 (14)

λ1,u = λ0 − ϕ1,u (15)

λ2,0 = λ1,0 − ϕ2,0 (16)

λ2,u = λ1,u − ϕ2,u (17)

λ3,0 = λ2,0 − ϕ3,0 (18)

λ3,u = λ2,u − ϕ3,u (19)

where ϕx is the displacement of vertex x, λj is the tilt angle of
segment j with respect to ground, λj,0 and λj,u are the tilt angles
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Fig. 17. Linkage model of the finger. λj is the tilt angle of segment j with
respect to ground. Lj is the length of segment j. mj is the mass of segment j.
Cj is the distance between the center of mass of segment j to vertex j. ρ is the
angle between the two sides of fingers (ρ = 120◦). ξ is the orientation of the
UR3e arm’s end-effector with respect to ground. s1 and s2 are base dimensions.
g is the gravitational constant (j = 0, 1, 2, 3).

at the initial position and transformation threshold, ρ is the angle
deflection at the base of the gripper (in our device, ρ = 120◦),
and ξ is the acute angle between the gripper’s central axis and the
horizontal plane, which can be calculated from the end-effector
speed �vee = [vx, vy, vz]

ξ = arctan

√
v2x + v2y

vz
. (20)

For vertex 1, the gravitational energy V j
1,g,0 due to segment j

(for j = {1, 2, 3}) before transformation is

V 1
1,g,0 = m1 gC1 sin λ1,0 (21)

V 2
1,g,0 = m2 g(L1 sin λ1,0 + C2 sin λ2,0) (22)

V 3
1,g,0 = m3 g(L1 sin λ1,0 + L2 sin λ2,0 + C3 sin λ3,0). (23)

The total gravitational energy is

V1,g,0 = V 1
1,g,0 + V 2

1,g,0 + V 3
1,g,0. (24)

The gravitational energy V j
1,g,u due to segment j at the transfor-

mation threshold is

V 1
1,g,u = m1 gC1 sin λ1,u (25)

V 2
1,g,u = m2 g(L1 sin λ1,u + C2 sin λ2,u) (26)

V 3
1,g,u = m3 g(L1 sin λ1,u + L2 sin λ2,u + C3 sin λ3,u). (27)

The total gravitational energy is

V1,g,u = V 1
1,g,u + V 2

1,g,u + V 3
1,g,u. (28)

The potential energy change due to gravity is

ΔV1,g = V1,g,u − V1,g,0. (29)

For vertex 2, V j
2,g,0 due to segment j (for j = {2, 3}) before

transformation is

V 2
2,g,0 = m2 gC2 sin λ2,0 (30)

V 3
2,g,0 = m3 g(L2 sin λ2,0 + C3 sin λ3,0). (31)

The total gravitational energy is

V2,g,0 = V 2
2,g,0 + V 3

2,g,0. (32)

V j
2,g,u due to segment j at the transformation threshold is

V 2
2,g,u = m2 gC2 sin λ2,u (33)

V 3
2,g,u = m3 g(L2 sin λ2,u + C3 sin λ3,u). (34)

The total gravitational energy is

V2,g,u = V 2
2,g,u + V 3

2,g,u. (35)

The potential energy change due to gravity is

ΔV2,g = V2,g,u − V2,g,0. (36)

Because of the mechanical stop on the fourth segment, the
third vertex is always forced into a configuration and was not
dynamically modeled.

4) Kinetic Energy: For each segment j

Tj =
1

2
mjv

2
j =

1

2
mj(ωDj)

2 =
1

2
mjω

2(x2
j + y2j ) (37)

bx = s1 cos ξ − s2 sin ξ (38)

by = s1 sin ξ + s2 cos ξ (39)

x1 = bx + L0 cos λ0 + C1 cos λ1,0 (40)

y1 = by + L0 sin λ0 + C1 sin λ1,0 (41)

x2 = bx + L0 cos λ0 + L1 cos λ1,0 + C2 cos λ2,0 (42)

y2 = by + L0 sin λ0 + L1 sin λ1,0 + C2 sin λ2,0 (43)

x3 = bx+ L0cos λ0+ L1 cos λ1,0+ L2 cos λ2,0+ C3 cos λ3,0

(44)

y3 = by+ L0sin λ0+ L1 sin λ1,0+ L2 sin λ2,0+ C3 sin λ3,0

(45)

where mj is the weight of each segment, vj is the linear velocity
at the center of gravity, ω is the angular velocity of the segment,
Dj is the distance between the center of mass and the rotational
center, xj and yj are local coordinates of the center of mass, and
s1 and s2 are base dimensions (see Fig. 17).

To predict the transformation of vertex 1, we include the
kinetic energy of all three segments

T = T1 + T2 + T3. (46)

To predict the transformation of vertex 2, we include the kinetic
energy of segments 2 and 3

T = T2 + T3. (47)
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TABLE IV
RED FINGER TRANSFORMATION MODELING

TABLE V
BLUE FINGER TRANSFORMATION MODELING

5) Pinch to Wrap Mode: In the pinch mode, the configura-
tions of vertices 1–3 were parallel, antiparallel, and antiparallel,
respectively. The fold direction of the segments were, in order,
M-M-V-M. In wrap mode, the vertices were antiparallel, paral-
lel, antiparallel, and the segment fold directions were M-V-V-M.
In each finger, the stops (see Fig. 15) forced the third and fourth
segments to maintain their fold direction, so only the second
segment (the upper segment of the first vertex) needs to be
considered (see Fig. 16).

6) Wrap to Neutral Mode: In the wrap mode, the vertex
configurations were antiparallel, parallel, antiparallel, and the
segment fold directions were M–V–V–M. In the neutral con-
figuration, the vertex configurations were all parallel, and the
segment fold directions all mountain. Therefore, the second and
third segments had to change direction, while the stop on the
fourth segment forced it to maintain the mountain direction.
The second and third segments depended on the dynamics at the
first and second vertices, respectively. To transform successfully,
the kinetic energy of plates 3–8 had to be greater than the
transformation energy of vertex 1 and the kinetic energy of plates
5–8 had to be greater than the transformation energy of vertex 2
(see Fig. 16).

7) Neutral to Pinch Mode: In the neutral mode, all vertices
were parallel, and the segment fold directions were M–M–M–
M. In the pinch mode, the vertex configurations were parallel,
antiparallel, and antiparallel, and the segment fold directions
were M–M–V–M. Therefore, only the third segment changed
direction, and only the second vertex transformed. To perform
this transformation successfully, the kinetic energy of plates 3–
8 had to be less than the transformation energy of vertex 1,
but the kinetic energy of plates 5–8 had to be greater than the
transformation energy of vertex 2 (see Fig. 16).

C. Gripper Transformation Process

In each transformation step, the transforming fingers were
set to an input θ1 = 12.5◦ and the nontransforming fingers
were set to θ1 = 55◦. The gripper was oriented so that the
transforming fingers were accelerated inward. The kinetic and
potential energies of the vertices at each transformation step can
be found in Tables IV and V.

1) Pinch to Wrap Mode: This transformation occurred in
two steps, and each step transformed two fingers. The gripper
reached a velocity of 0.98 m/s before being stopped by the arm.
This velocity was calculated so that the kinetic energy of the
plates above vertex 1 was enough to overcome the vertex’s
bistable point (see Tables IV and V, Supplemental Dataset S2).

2) Wrap to Forklift Mode: This transformation occurred in
three steps, and each step transformed two fingers. In the first
step, the fingers transformed from a wrap to a neutral configura-
tion. The gripper reached a velocity of 0.95 m/s before stopping,
sufficient for the kinetic energy of the plates above vertex 1 to be
greater than the transformation energy of vertex 1 (see Tables IV
and V, Dataset S2).

In the second step, the same two fingers transformed from
a neutral to a pinch mode. To achieve this transformation, the
gripper was accelerated to a speed of 0.30 m/s. At this speed, the
kinetic energy of the plates above vertex 1 was less than amount
necessary to trigger vertex transformation. The kinetic energy of
the plates above vertex 2 was sufficient to trigger transformation
of vertex 2 (see Tables IV and V, Dataset S2).

In the third step, the other two fingers transformed from a wrap
to a neutral position, using the same steps as the first step. The
calculations for these transformations can be found in Tables IV
and V, Dataset S2.
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Fig. 18. Demonstration of the transforming gripper performing three different grasps. (a) Gripper starts in a radial pinch mode. (b) It pinches a ball. (c) It
transforms into a cylindrical wrap mode. (d) It grasps a water bottle. (e) It transforms again into a forklift mode. (f) It lifts a metal beam.

3) Forklift to Pinch Mode: This transformation occurred in
one step, transforming two fingers from the neutral to the pinch
configuration. To achieve this transformation, vertices 2 and 3
had to transform, so the gripper was accelerated to a speed of
0.30 m/s, similar to the second step of the previous transforma-
tion (see Tables IV and V, Dataset S2).

D. Gripper Demonstration

To demonstrate that the gripper could apply these grasps
and transform between them, the gripper was mounted to the
final joint of a Universal Robots UR3e robotic arm with a
preprogrammed trajectory that included six phases: three grasp
phases in which the arm positioned the gripper to engage three
different objects (a plastic ball, 41 g; a water bottle, 155 g;
and an aluminum beam structure, 642 g), and three transfor-
mation phases in which the gripper reconfigured from a pinch
to wrap mode, wrap to forklift mode, and forklift to pinch
mode, demonstrating that the transformation is reversible and
repeatable (Supplemental Video S1).

The fingers were controlled by two RoMeo v2 microcon-
trollers; each board controlled a pair of motors. The gripper was
controlled by a push button connected to the microcontrollers;
upon pressing, the robot would perform a single step of the
demonstration and then halt until the next button press.

Gripper transformation consisted of multiple flicks, separated
by rotation of the gripper. During each flick, two of the fin-
gers folded to θ1 = 55◦ to lock them in place, and the other
two opened to θ1 = 12.5◦, which made them susceptible to
reconfiguration. A specific impulse, based on the earlier vertex

characterization, was applied to the gripper by accelerating and
rapidly decelerating the arm, inducing some of the vertices to
snap through (see Fig. 16 and Tables IV and V). The relevant
energy calculations for each transformation can be found in the
Supplemental Dataset S2.

In the first phase [see Fig. 18(a)], the gripper grasped a plastic
wiffle ball with a pinch grasp. This mode required the first and
third vertices to be antiparallel, so that all fingers bend inward
to pinch at a point [see Fig. 18(b)]. After lifting and replacing
the ball, it then transformed, reconfiguring the first vertex to
parallel and the second vertex to antiparallel [see Fig. 18(c)]. In
this configuration, the fingers on either side spiraled in opposite
directions to wrap around cylindrical objects. The gripper then
grasped, lifted, and put back a water bottle [see Fig. 18(d)]. The
gripper transformed again, reconfiguring two of its fingers so that
all vertices were parallel [see Fig. 18(e)]. In this configuration,
it lifted an aluminum bar from below before putting it back
[see Fig. 18(f)]. Finally, the gripper transformed back to the
pinch mode and completed its demonstration. The sequence was
repeated ten times, and each time all transformations and grasps
were performed successfully. Transformation of individual fin-
gers took between 0.14 and 0.35 s (see Table VI).

The velocity and acceleration of the robot arm during the
demonstration were predefined and based on a series of posi-
tioning waypoints (Supplemental Dataset S3). Each joint began
from rest and reached a final target velocity through a constant
acceleration. During the transformation phases, the target veloc-
ities were chosen so that the gripper reached the linear velocity
and orientation necessary for transformation. The velocity of
each joint at the end position and the moving time during the
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TABLE VI
FINGER TRANSFORMATION DURATION

fingers’ mode transformations can be found in the Supplemental
Dataset S4.

V. DISCUSSION

These results indicate that dynamic origami transformation
can be used in load-bearing machines. By using elements with
nonlinear stiffness, the origami structure is capable of both
the compliance for transformation and the stiffness to interact
with the environment. In conjunction with the origami string
template, we can combine a wide range of potential kinematic
behaviors in a single mechanism and reconfigure between them.
By using this transformation in a robotic gripper, we show that
the technology is capable of the practical kinematics necessary
for intelligent machines and the ability to transform under a
variety of orientations.

There are technical limitations to the size and stiffness of
dynamically transforming origami machines. We expect that
as an origami machine gets larger, its mass will grow faster
than its stiffness due to the square-cube law. In addition, when
multiple vertices are arranged in series, the backlash at each
successive vertex compounds so that patterns with more vertices
will be more compliant. With our current design and actuation,
we observed that origami strings with more than four vertices
were practically uncontrollable due to this compounding behav-
ior. We expect that this backlash-dependent compliance can be
minimized through a combination of more precise fabrication
and better controllers; if the system has a sufficiently precise
torque input, it can reliably induce reconfiguration within an
arbitrarily small backlash window and less backlash is necessary
at each vertex.

There may also be challenges to scaling these systems down
in size. Origami lends itself to millimeter-scale fabrication, but
the stiffness would still need to be precisely tuned for trans-
formation, which may be more difficult with planar fabrication
techniques. We would also expect to need faster inputs to com-
pensate for the reduced mass when balancing the kinetic and
transformation energies.

There are also design challenges in the individual creases.
Because our faces have nonzero thicknesses and no offset, the
maximum fold angle is limited to 55◦. Previous work has shown
how to account for facet thickness [7], [40], and such designs
could be integrated with transforming systems.

This article focuses on a relatively simple origami template,
but we believe this approach to origami transformation could
be applied to arbitrarily complex patterns. The transformation
of vertices with five or more edges would be more challenging
both because there are more degrees of freedom and more stable
configurations, but we expect that the extra degrees of freedom

could be modeled with additional state variables, and there is a
known upper bound on the number of possible configurations
for a given vertex [41].

More complex vertex networks could also be transformed, but
would likely require a more sophisticated model. Our current
model assumes a fixed transformation threshold for each ver-
tex, which is an acceptable assumption for the relatively small
number of vertices in this design. However, the actual threshold
moves slightly as the mechanism moves, and each vertex may
approach this threshold at a different point in time, requiring a
more complex set of equations to accurately capture the system
state. We expect that the most substantial limit to complexity is
in the compliance of the overall structure and precision in the
controls, since the transformation of a single vertex is coupled
to every other vertex in the system.

There are many examples of nonorigami multigrasp grippers,
but we believe that this gripper demonstrates the potential to
outperform them in some ways. Some existing grippers use
multiple actuated degrees of freedom to effect different grasping
modes [42]–[44]. Others have a single actuator and passively
adapt to physical constraints [45], [46]. The origami gripper
presented in this article has the strength of both approaches by
allowing for multiple kinematically constrained grasping modes,
all driven by a single actuator. It also allows the designer to
harness the theoretical complexity and computational tools of
origami to quickly realize complex shapes and behaviors. The
most substantial downside is that this gripper, like many other
origami machines, is substantially more compliant. While it can
lift some objects, it does not have the payload capacity of other
similarly sized grippers [42].
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