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Abstract— The food industry is dependent on human labor
for tasks that require tactile sensing, due in part to a lack
of robotic sensors that are delicate enough to interact with
food. In this paper we present the design, modeling, and
performance of a durometer constructed with soft materials.
We performed experiments to investigate the sensor’s material
selection, repeatability, drift, probing speed, and calibration.
We also integrated the sensor into a commercial soft robotic
gripper and used it to measure the hardness of an orange.
The orange would be damaged by a traditional durometer, but
the soft durometer left no visible marks. These results suggest
that soft robotic sensors can benefit the food industry and
overcome limitations associated with the interaction between
robotic systems and fragile objects.

I. INTRODUCTION

Global food supply chains have undergone drastic changes
in the last decades as a result of consumer demand for
better products at lower prices [1]. In addition to the intrinsic
challenges associated with the food market, external factors
such as world population growth, volatility in fuel price, and
the impacts of climate change have exacerbated the urgency
for more flexible and robust processes in the food industry
[2] [3].

Producers have resorted more and more to automation.
However, this is mostly restricted to picking, placing, pack-
aging and palletizing [4]. Such restriction is imposed by the
nature of traditional robotics which is based on the utilization
of rigid links, actuators, and sensors. To that end, soft
robotics is an appealing framework for developing automated
food processors. Compliant robots can adapt to irregular
shapes, are gentle enough to handle delicate objects, and can
work side-by-side with humans. As an example, the launch of
the Flex Picker robot in the late 1990s resulted in improved
operational efficiency, and reduction in material movements,
vehicle activity as well as in-process stages [4]. Moreover,
soft robots have already been applied to strawberry picking
[5], tomato harvesting [6], [7], and meat processing [8], [9],
[10], and Soft Robotics Inc. has commercialized soft grip-
pers for food handling (among other things). This includes
demonstrated pick-and-place operations of steaks, peppers,
cupcakes, and many other food items [11]. Manipulation isn’t
the only function necessary for food processing. One task
that human operators often perform and robots must replicate
is the sorting of food (fruits for example) based on their hard-
ness. However, measuring hardness presents some interesting
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Fig. 1. The soft durometer consists of a magnetic probe, hall sensor, and
force sensor encased in a soft body.

challenges. Traditional durometers use standardized probes
attached to a spring; The spring applies a constant force,
and the displacement of the probe is measured. The more
displacement, the harder the material. Unfortunately, these
probes would puncture fruit or fish skin since their predefined
geometry can induce large stresses on fragile objects. Soft
durometers have been implemented using a Gel-sight sensor
in conjunction with machine learning [12], or with multi-axis
sensor arrays [13], but both of these methods are relatively
expensive and bulky.

Quantifying the stiffness of fragile objects is challenging
because it is difficult to construct simple sensing elements
that can measure the deformation of these objects without
causing permanent damage to them during the loading pro-
cess. In this paper we present a silicone-based durometer
that can be seamlessly integrated into existing soft robots.
This sensor combines a force transducer and a hall-effect
transducer with a magnet embedded in a soft “probe” to
measure compressive deflection of the probe tip (Fig.1). Hall
effect sensors have been used in previous soft robots [14],
[15],[16],[17],[18],[19], as have rigid embedded elements
[20], and the concept of stiffness proprioception as illustrated
in [21]. We present the design, fabrication, and calibration of
the sensor, characterization of its performance, and demon-
stration of its use on an orange.

II. DESIGN

The soft durometer includes a force transducer (Interlink
Electronics FSR 402) and a hall effect transducer (Diodes
Incorporated AH49E) with a 3mm cubic magnet (K&J
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Fig. 2. a) Sensor working principle showing different magnet displacements
for targets of different hardnesses. b) Magnet displacement versus force
expected behavior for targets of different hardnesses

Magnetics B222G-N52) embedded within a soft probe as
shown in Fig. 1. The Hall effect component is vertically
aligned with the magnet and is soldered to a flexible copper
etched circuit bonded to a polyethylene terephthalate glycol
(PETG) laser cut piece and the force transducer. A housing
keeps the sensor circuitry and the probe in proper alignment
and orientation during loading and unloading conditions.
Guaranteeing the proper alignment and normal orientation
between the magnet and the hall effect sensor is crucial
for accuracy since this transducer detects magnetic field
variations perpendicularly aligned with its center.

The operation of the sensor is similar to that of tradi-
tional durometers. On contact with the target object, the
probe will penetrate the target’s surface while simultaneously
compressing. Probe compression brings the magnet closer
to the Hall effect transducer. As the sensor continues to be
pushed into the target, the sensor base will eventually contact
the target surface, at which point the contact force will be
distributed over the entire sensor face, the force-displacement
ratio will change substantially, and the sensing process will
complete (Fig. 2a). Qualitatively, the displacement of the
magnet relates to the hardness of the target. If the target
is much stiffer than the probe, then the magnet will displace
substantially. Alternatively, if the target is much softer, then
the magnet will not displace.

During the probing process, we typically see two regimes
in the relationship between the probe compression (observed
through magnet displacement xs) and force F (Fig. 2b). In
the first regime, the probe is the only part of the sensor in

contact with the target. Because the probe has a fixed axial
stiffness, the force-displacement curve is linear and always
has the same slope. The sensor changes regimes when the
sensor base contacts the target surface at displacement x∗s .
If the target is much softer than the probe, x∗s will be much
smaller than the probe height h. If the target is much harder,
x∗s ≈ h. After this transition, the force-displacement curve
will have a smaller slope, correlating to the much higher
stiffness of the sensor base. We only use x∗s to determine
the target hardness, so we stop sensor engagement at a force
Fcheckpoint shortly after the transition to avoid pushing too
hard on the target.

In order to ease the identification of the point at which the
change in observed stiffness occurs, it is crucial to design
large stiffness ratios into the geometry of the nub and the
base of the probe. Because we use a single material for both,
we maximized the ratios for the cross-sectional areas of these
two sections to achieve this difference.

III. MODEL

We developed a two-part linearized model to predict the
sensor’s force-displacement curve and optimize its design for
a given range of hardnesses. We considered a system with
two coordinates, the magnet displacement xs and the target
deformation xm. The total displacement xt = xs + xm.

In the first regime, the contact between the sensor and
the target occurs only over the top of the nub as shown in
Fig. 3a. Therefore, only the central portions of the sensor
and the target contribute to the overall system’s stiffness.
We denote the corresponding stiffness of the nub by ks1 and
the target by km1, by analyzing the spring systems in Fig. 3a,
we obtain the governing equations for the deformation of the
magnet, object, and the overall system.

F = ks1 · xs = km1 · xm =
ks1 · km1

ks1 + km1
xt (1)

The transition point between the two regimes occurs at
xt = h, which coincides with the sensor base coming into
contact with the target surface. The loading point at which
this change takes place is characterized by the transition
magnet displacement, x∗s , as well as the force required for
such displacement, F ∗.

x∗s =
km1

ks1 + km1
h (2)

F ∗ =
ks1 · km1

ks1 + km1
h (3)

After the transition, the sensor base is under compression,
as well as a larger area of the target, resulting in substantially
larger stiffnesses ks2 and km2 of the probe and target,
respectively.

ks2(xs − x∗s) = F − F ∗ (4)

Precise values for ks2 and km2 are not important, since
the hardness is calculated from x∗s . The important thing is
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Fig. 3. We modeled the sensor-target interaction as a system of springs. a) First regime showing the contact of an object with the sensor’s nub. b) Second
regime where object starts making contact with the base of the sensor.

that they are substantially larger than ks1 and km1 in the first
regime, so that the transition is observable.

Although stiffness and hardness represent different mate-
rial properties, they are usually tightly correlated. If enough
objects of known hardnesses are tested with results recorded
for a specific loading point Fcheckpoint - shortly after the
transition point - one can use these results to calibrate the
sensor to detect the hardness of untested objects.

IV. FABRICATION

Fabrication of the soft probe consisted of a two-step
casting process using 3D printed molds (using Formlabs 2)
(Fig. 4a). Using a two-part Silicone polymer (Smooth-On,
Dragon Skin 10 or Dragon Skin 30) we filled the bottom
part of the mold, degassed it in a vacuum pot, inserted the
top portion of the mold to form a vertical channel within
the silicone, and heated the mold at 60◦C for about 1.5
hours. After curing, we inserted the magnet into the vertical
channel, covered the straight cut by pouring more silicone

a)

b) FeCl₃
Circuit Trace

Magnet

Lasercut PETG

Force sensor WiresForce sensor

Mold

Hall sensor

Fig. 4. Fabrication of the sensor probe. a) The sensor probe with the
embedded magnet was cast using a three-piece 3D printed mold. b) The
force and hall effect transducers circuitry was made by stacking the sensors
with a piece of lasercut PETG and flexible circuit obtained through an
etching process.

up to the surface of the probe’s base and placed the system
again in the oven at 60◦C for about 30 minutes, as shown in
Fig. 4b. Finally, we used snips to trim any flashes of silicone
produced on the parting lines of the mold.

We 3D printed a housing for the probe using a flexible fil-
ament (NinjaFlex, NinjaTek with the Lulzbot Taz 6 printer).
The housing was designed to hold the silicone button in
place while sitting on top of the hall effect sensor placed
underneath it. The circuit that supported the hall effect sensor
was made with a flexible sheet of copper-clad polyimide
substrate and a solid ink printer (Epson ColorQube 8580)
using a previously developed method [23]. To protect the
circuit from being torn during the soldering process, we
glued it to a laser cut PETG sheet. After soldering the wires
and the hall effect sensor to the circuit, the slicone structure
was inserted into the holder and all components were aligned.
Finally, these components were sandwiched together and
held in place by extruding more flexible filament around the
circumference of the button holder and the mounting base of
the sensor.

V. CALIBRATION

To calibrate the force and displacement transducers in
the durometer, we used a mechanical tester (Mecmesin)
equipped with a 250N load cell, connected to a desktop
computer for force and displacement data collection. We
wired the force transducer in a voltage divider configuration
with a 4.7 kΩ reference resistor. Both transducers were
powered with an input of 5V from a National Instruments
USB-6002 data acquisition module (DAQ) which also read
their outputs. Sensor data was processed with a moving

Hardness 100% modulus Strength
Dragon Skin 10 (DS 10) 10 A 150 kPa 3.3 MPa
Dragon Skin 30 (DS 30) 30 A 590 kPa 3.4 MPa

TABLE I
SENSOR MATERIAL PROPERTIES[22]



0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
D

is
p
la

ce
m

en
t  (

m
m

)

0

20

40

60

80

100

120

F
o
rc

e 
(N

)

Voltage (V)

1.5 1.6 1.7 1.8 1.9 2.0 2.2 2.32.1 2.4

Voltage (V)
0 0.5 1.0 1.5 2.0 2.5 3.5 4.03.0 4.5

a)

b)

Fig. 5. a) Hall effect transducer calibration curve relating the output voltage
with the input displacement. b) Force transducer calibration curve relating
the output voltage with the input force. Shaded region indicates standard
deviation (N = 10).

average filtering data collection script on Labview with an
averaging window of 5 samples.

We collected the data by moving the sensor at 32 mm/min
for a total displacement of 5 mm while collecting data at
100 samples per second on the mechanical tester as well
as the DAQ. A rigid acrylic loadcell probe pushed against
the durometer’s probe so that loadcell displacement was
identical to magnet displacement. We repeated this procedure
ten times and observed minimal variance for the transducers
(Fig. 5). From these results, we constructed a table relating
force and displacement data with the transducers’ voltage
outputs. A tabular interpolating technique was chosen be-
cause of the nonlinear effects associated with the dead zone
in the force transducer at lower forces and the material’s
viscoelasticity.

VI. EXPERIMENTS

In order to evaluate the performance of the sensor, we
ran several tests. In all of them, targets mounted on the

moving head of the mechanical tester were loaded against
the sensor which was mounted at the stationary base of the
tester. We 3D printed fixtures to guarantee that the sensors
and the objects were properly aligned throughout the loading
process. A LabView routine recorded data upon receiving the
triggering signal from the mechanical tester indicating initial
contact between the sensor’s nub and the object. Force and
magnet displacement data were collected at 100 Hz.

A. Repeatability

We built sensors using two different silicones for the soft
body: DS10, and DS30. To verify which material would show
better performance in terms of sample-to-sample repeatabil-
ity, we made three sensors of each material, and loaded each
sensor three times with a target made out of DS30 (Fig. 6a).

From this figure we observe that sensors made out of DS10
were more repeatable. We believe that the lower viscosity of
the uncured silicone in the softer sensor material contributed
to a more homogeneous mixture during the fabrication
process. Therefore, variations related to the mixing ratio
were believed to be more prominent for the harder material.
As predicted by the model, the point where the change in
stiffness is observed occurs at a larger magnet displacement
for this softer sensor. Based on the more repeatable behavior
observed for this type of material, we concluded that DS10
would be more appropriate for this durometer and used it for
all subsequent experiments.

B. Probing Speed

To observe the effect of probing speed on the sensor, we
ran tests at three different speeds. A single sensor made out
of DS10 was tested with probing speeds of 28, 32, and 36
mm/min against a target made out of DS30, three times at
each speed (Fig.6b).

From these tests we concluded that the sensor responded
rapidly enough and showed no time related effects for the
probing speeds used.

C. Drift

To evaluate how much drift the sensor would accumulate
over time, we tested a single sensor made with DS10 against
a target made with DS30 at three different days, one trial a
day. The results shown in Fig. 6c indicated no drifting effects
on the sensor performance over this time span.

D. Model Validation

We tested the sensor with 12 different targets (EC30,
EC50, DS10, MS30, DS30 from Smooth On as well as test
block kit from VTSYIQI). The hardnesses of these targets
were first measured using a calibrated commercial durometer
(Rex DD-3). Each target was then measured with the soft
durometer 10 times (Fig. 7). The spread of the curves indicate
how targets of increasing hardnesses induced larger magnet
displacements in the first regime as expected. Overall, the
sensor was clearly able to distinguish between targets of
different hardnesses, especially those ranging from 37.82
Shore OO to 68.22 Shore A.
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Fig. 6. Experimental relationship between force and probe displacement xs. a) Results for different sensors made with DS10 (red) and DS30 (blue)
bodies. b) Results for a sensor made with DS10 and operated at three different speeds: 28, 32, or 36 mm/min. c) Results for a sensor made with DS10
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We observed that for extremely soft targets, we could not
apply large forces without damaging the target. Combined
with the dead zone of the force sensor, this prevented us
from getting more accurate readings. On the higher end of
the hardness range tested, the proximity of the curves in the
second regime indicated the increased difficulty of the sensor
in distinguishing among different targets. This is explained
by the fact that the hardness ratio of the target to the sensor’s
material becomes so large after a certain point that the sensor
cannot distinguish as well as it does for softer targets.

In order to compare our analytical model with test results,
we superimposed the modeled curves over the test results.
We evaluated ks1 and ks2 for the sensor as well as km1 for
each target, using our mechanical tester. The results shown
in Fig. 8 for three of the targets tested indicate that the
analytical model predicted the test results fairly well. We
believe that the discrepancies associated with the results for
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softer materials were due to the hyperelastic behavior of
such materials that become evident at much lower forces.
This nonlinear behavior is the reason for a larger error
related to the linear approximation made for the stiffness of
such materials represented by variable km1. In addition, the
dead-zone and reduced sensitivity associated with the force
transducer at lower forces induced a greater impact on the
results for these objects.

VII. DEMONSTRATION

To demonstrate the applicability of our proposed sensor,
we developed an automated probing procedure in LabView
(Algorithm 1). The procedure was based on the previous
selection of force ”checkpoints” at which the magnet dis-
placement was checked and linearly interpolated for hardness
results based on previous calibration. We utilized the results
shown in Fig. 7 along with the hardness values obtained with
the commercial durometer to correlate magnet displacement
at specific force checkpoints with hardness. For the range of
hardness tested, we specify three force checkpoints of 4.5 N,
9.0 N and 18 N, respectively. The lowest force checkpoint
was intended for materials harder than 22.44 Shore OO and
softer than 7.74 Shore A. The second, for materials harder
than 7.74 Shore A and softer than 50.37 Shore A. The third
force checkpoint was used for materials harder than 50.37
Shore A and softer than 87.98 Shore A. By implementing
different force checkpoints, we avoided pushing targets too
hard before receiving a hardness result from the sensor.

We mounted the sensor on the palm of a soft gripper
manufactured by Soft Robotics Inc., and tested the sensor
on an orange (Fig. 9). For this experiment, the gripper was
positioned over the orange and moved down until a hard-
ness reading was obtained. The orange’s hardness was also
measured with the commercial durometer for the purpose of
comparison.

The soft sensor indicated a hardness reading of 25 Shore
A with no apparent damage to this fruit. On the other hand,
the durometer indicated a hardness of 25x.9 Shore A but
left a indent on the orange. Despite the minimal discrepancy
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between the hardness readings, the safer interaction between
the soft sensor and the orange demonstrated the potential
applicability of such sensor for food handling purposes.

VIII. DISCUSSION

In this paper we presented the design and performance of
a soft durometer intended for food handling. The analytical

Algorithm 1 Hardness Sensing Procedure
1: F1 ← Force checkpoint 1
2: dmin

1 ← Minimum displacement 1
3: dmax

1 ← Maximum displacement 1
4: F2 ← Force checkpoint 2
5: dmin

2 ← Minimum displacement 2
6: dmax

2 ← Maximum displacement 2
7: F3 ← Force checkpoint 3
8: dmin

3 ← Minimum displacement 3
9: dmax

3 ← Maximum displacement 3
10: ε← Acceptable force deviation
11: while True do
12: F ← Force transducer reading
13: d← Hall Effect transducer reading
14: if F > F1 − ε and F < F1 + ε then
15: if d < d1min then
16: HARDNESS ← TOO SOFT
17: else if d < d1max then
18: HARDNESS ← Interpolated hardness value
19: end if
20: else if F > F2 − ε and F < F2 + ε then
21: if d > d2min and d < d2max then
22: HARDNESS ← Interpolated hardness value
23: end if
24: else if F > F3 − ε and F < F3 + ε then
25: if d > d3min and d < d3max then
26: HARDNESS ← Interpolated hardness value
27: else if d > d3max then
28: HARDNESS ← TOO HARD
29: end if
30: end if
31: end while

model indicated that the range of hardnesses can be pro-
grammed by the geometry of the sensor probe as well as
its material properties. This gives the designer the freedom
to optimize the sensor design for applications that demand
either a larger range of hardness with less accuracy or a
smaller range with more accuracy.

The results suggest that this sensor has good repeatability
from sample to sample as well as robustness to drifting
effects and different probing speeds. Moreover, the tests
indicated that the analytical model proposed predicted rel-
atively well the results. However, some discrepancies due to
the nonlinear behavior of the hyperelastic materials tested
and the dead zone associated with the force transducers
affected the performance of the sensor for softer materials.
Further research could investigate how the sensor operates in
different orientations relative to both the target surface and
gravity.

In order to address these challenges, we believe that other
material options should be explored for the sensor probe. In
addition, we believe that machine learning techniques, like

Fig. 9. The soft durometer was mounted on a Soft Robotics Inc. gripper
and used to measure the hardness of an orange.



those shown in [24] and [25] could help in the development
of accurate algorithms for the detection of hardness without
resorting to high probing loads. Nonlinearities associated
with hyperelastic materials and surface deformations could
be addressed by such techniques. Stiffening mechanisms like
those shown in [26], and [27], could leverage the advantages
of soft sensors, enabling them to be tuned automatically for
different application requirements.
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